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I . В В Е Д Е Н И Е

Среди элементоорганических соединений весьма перспективным
является класс борорганических соединений — карборанов, соединений
со структурой правильных многогранников или их фрагментов *, состо-
ящих из атомов бора и углерода или других элементов *.

Наиболее полная сводка данных о химии карборанов приведена в
монографии Граймса2 (по 1970 г.) и обзоре Уильямса3 (по 1968 г.).
Вопросам теории строения и химической связи в гидридах бора и карбо-
ранах посвящена монография Липскомба4. Новейшие достижения в
химии карборанов систематически освещаются в ежегодных обзорах5"8.
Кроме того, отдельные этапы развития этой области химии отражены в
ряде ранних обзоров 9~15. Некоторым специальным вопросам химии кар-
боранов посвящены работы 16~25.

Принимая во внимание значительный интерес широкого круга иссле-
дователей к современным проблемам элементоорганической химии, в
частности к развивающейся бурными темпами химии карборанов, мы
считали целесообразным дополнить и попытаться обобщить имеющийся
в литературе материал. Основной целью обзора является рассмотрение
общих закономерностей протекания химических реакций в ряду клозо-,
нидо- и аршсно-'карборанов, а методы получения, строение и химические
свойства по каждому из представителей этих классов соединений при-
ведены как справочный и иллюстративный материал.

Первые сведения о существовании карборанов, по данным Уиль-
ямса3, получены Ландесманом в 1953 г., который методом масс-спектро-
метрии обнаружил в продуктах пиролиза смеси диборана и ацетилена

* Получены соединения, содержащие в молекуле атомы N, P, As, S, Ge, Si и др.,
а также атомы переходных металлов. В данном обзоре химия гетероборанов, гетеро-
карборанов, металлоборанов и металлокарборанов не рассматривается, но общие за-
кономерности химии карборанов могут быть перенесены и на эти классы соединений.
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ионы, принадлежащие соединениям состава С2ВзНх, С2В4Н„ С2Н5Н2»
причем суммарный выход их по количеству прореагировавшего дибо-
рана был менее одного процента. Позже Кейлин получил ту же смесь-
(с выходом около 2%) из пентаборана(Э) и ацетилена в электрическом
разряде. По данным масс-спектрометрии был установлен нижний пре-
дел числа атомов водорода — С2В4Н,,>6( C2B5HZ>7, и был сделан вывод
о замкнутой структуре полученных соединений. В 1956 г. Гуд повторил
эту работу и выделил соединения состава С2ВзН5, C2B4HS, С2В5Н7. Для
С2В3Н5 по данным масс-спектрометрии ЯМР ИВ и ПМР единственно
возможной структурой оказалась тригональная бипирамида. Для С2В4Н6

и С2В5Н7 были предложены структуры октаэдра и пентагональной
бипирамиды соответственно. В литературе эти данные были опублико-
ваны в начале 60-х годов 2β· 27. Гуд и Уильяме предложили назвать полу-
ченные соединения карборанами. В дальнейшем это название было рас-
пространено и на другие соединения, *молекулы которых представляют
собой замкнутые многогранники или их фрагменты и содержат атомы
бора и углерода.

В 1962—1963 гг. в литературе появились сообщения о синтезе еще
одного представителя семейства карборанов—-С2В10Н12 и его С-про-
изводных из декаборана(14) В10Н14 или его комплексов с основаниями
Льюиса B10H12L2 и соединений ацетиленового ряда. Из 1,2-изомера при
термической изомеризации (450—500° С) был получен 1,7-изомер28,
а при более высокой температуре и 1,12-изомер карборана(12)29.

Деструкцией 1,2- и 1,7-С2В10Н12 были получены карбораны с 9, 8, 7
и 6 атомами бора в многограннике30"32. Соединение Ме2С2В6Н6 было
выделено Герхартом и Уильямсом из продуктов реакции гексабо-
рана(Ю) с диметилацетиленом33. Таким образом, в результате система-
тических исследований были получены все представители гомологиче-
ского ряда /огозо-карборанов общей формулы С2В„Н„+2. К настоящему
времени получены также /огозо-карбораны, содержащие один и три
атома углерода в молекуле.

В начале 60-х годов появились также сообщения о синтезе предста-
вителя нмдо-карборанов, т. е. карборанов с открытой структурой,—
С2В4Н8

3 4. В настоящее время известны ныдо-карбораны, содержащие до
четырех атомов углерода в молекуле.

Сообщение о С2В7Н13, первом представителе ара*«о-карборанов, было
опубликовано в 1966 г.35. Второй а/?шсно-карборан — С2В8Н14—стал
известен сравнительно недавно36.

II. КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА
ПРИРОДА СВЯЗИ В КАРБОРАНАХ

По предложению Уильямса *, карбораны классифицируются следую-
щим образом: С0-2ВпН„+ 2 — /огозо-карбораны, С0-4В„Нп+4 — ныдо-карбо-
раны, Со-вВ„Нп+2 — аралгно-карбораны; случай Со соответствует гидри-
дам бора — боранам.

1. Номенклатура

Название соединения, согласно рекомендациям номенклатурной
комиссии Американского химического общества37, составляется по
следующим правилам: вначале указывается местоположение атомов
углерода в молекуле, затем число атомов углерода и добавляется при-
ставка, характеризующая. тип структуры (клозо- или нидо-); далее
следует греческое числительное, соответствующее общему числу атомов,
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образующих молекулу, и добавляется окончание -боран; в конце, в скоб-
ках, указывается число атомов водорода.

В случае анионов порядок составления их названия в целом сохраня-
ется, но вначале указывается число атомов водорода в молекуле,
а окончание -боран заменяется на -борат и в скобках указывается заряд

Рис. 1

аниона. Например, соединение 1,10-С2В8Н10 называется 1,10-дикарба-
клозо-декаборан (10); 7,8-С2В9Н13 — 7,8-дикарба-ныдо-ундекаборан (13);
7,8-С2В9Н12—додекагидро-7,8-дикарба-нидо-ундекаборат(1—).

Основные принципы нумерации атомов в молекулах гидридов бора
и карборанов заключаются в следующем. В случае клозо-карборанов
последовательно, начиная с верхнего, нумеруются атомы, лежащие в
плоскостях, перпендикулярных оси симметрии наиболее высокого
порядка. Нумерация производится по часовой стрелке. В случае нидо-
карборанов используется их плоская проекция и структура рассматри-
вается со стороны, противоположной открытой грани. Нумерация осуще-
ствляется также по часовой стрелке и начинается с атомов, лежащих
ближе к центру проекции. Атомы углерода и других элементов при
нумерации должны иметь минимальные порядковые номера (рис. 1).

2. Изоэлектронные серии

В химии карборанов удобно выделять изоэлектронные серии3,
т. е. серии соединений, молекулы которых, имея одинаковые геометри-
ческие и электронные структуры, отличаются друг от друга соотноше-
нием СН/ВН~ или СН/ВН2 звеньев, при этом эквивалентами струк-
турной единицы СН являются ВН~ или ВН2. В качестве примера можно
привести серию В6Н10, СВ5Н9, С2В4Н8, С3В3Н7, С4В2Н„ или В.Н,*, СВ5Н7,
С2В4Н6 (рис. 2 и 3).

* В6Н8 не получен, хотя существует В6Н6

2~. Формально при протонировании по-
следнего должен получаться В6Нв, как, например, в случае ΒιοΗιο2~+'2Η+—>-ВюНиэ8.
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Серию СН/ВН- в случае клшо-соединений можно представить в
общем виде следующим образом: Вп+2Н£~+2; СВп+1Нп+2; С2В„Н„+2.
Если расширить эту изоэлектронную серию за счет введения еще одного
звена СН, то получим семейство СзВ^Н^+г. Такого типа соединение

должно иметь положительный
заряд ( + 1), а в результате
отрыва протона молекула
должна быть в целом электро-
нейтральной — CsBn_iHn+1. Со-
единение такого типа получе-
но — С3В5Н7

 Э9, оно принадле-
жит изоэлектронной серии
С.В.Н.+, С2ВвНв, (СВ,Нг),
В8Н8

2- (рис.4).
В качестве примера изоэлектронной серии СН/ВН- соединений с

открытой структурой можно привести следующий ряд: С2В8Н12 *,
СВ,Н12 **, В10Н12

2- (рис.5).
Приведенные изоэлектронные серии существенно расширяются, когда

в качестве структурных единиц полиэдрических молекул используются
атомы других элементов, такие, как Al, Ga, Zn, Ge, Sn, Pb, Ν, Ρ, S, As
и др.

Соответствие изоэлектронности и изоструктурности соединений сви-
детельствует о том, что углерод и другие атомы участвуют в построении
системы связывающих орбиталей таким же способом, как и атомы бора,
т. е. для них применимы все те принципы образования химической связи,
которые предложены для описания гидридов бора4.

При рассмотрении атомов переходных металлов в качестве струк-
турных единиц следует учитывать специфический характер связи их с
карборановым лигандом. Подробно комплексы переходных металлов с
карборановыми лигандами рассмотрены в обзорах Хоторна19· 2i~23.

3. Трехцентровая связь и влияние атома углерода
на электронное распределение в карборанах

Особенности строения и химической связи в гидридах бора и карбо-
ранах получили свое объяснение благодаря представлению об образо-
вании двухэлектронной химической связи между тремя атомами (трех-
центровая связь). В невозбужденном состоянии на трехцентровой свя-
зывающей орбитали располагается два электрона. В молекулах гидри-
дов бора и в карборанах все атомные орбитали каждого атома участ-

* Получено два изомера С 2В 8Н 1 2

4 0 · 4 1.

** Получено С — NRs-замещенное производное этого карборана — R3NCB9H11;

вследствие наличия катнонного фрагменте RsN молекула Нейтральна".
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вуют в образовании химической связи, и все образующиеся связываю-
щие орбитали заполнены электронами.

Возможно образование трех различных типов трехцентровых связей:
центральной В — В — В , открытой В — В — В и открытой В — Η — В.

В центральной В—В—В-связи каждый атом предоставляет но> гиб-
ридизованной атомной орбитали, которые перекрываются таким обра-

П
ά

В

δ

Рис. 6

В В

в

Рис. 7

зом, что максимальная электронная плотность оказывается в центре
треугольника (рис. 6, а). В открытой В — В — В-связи центральный
атом предоставляет р-орбиталь, два других — гибридизованные атомные
орбитали, и перекрывание осуществляется, как показано на рис. 6, б.
В открытой В—Η—В-связи цен-
тральный атом водорода предостав-
ляет s-орбиталь для образования
связи, а два атома бора — свои гиб-
ридизованные атомные орбитали
(рис. 6, в). В случае а формально
на каждый атом, образующий трех-
центровую связь, приходится по 2/3
электрона, а в случаях б и β на
центральный атом приходится один
электрон, на два другие — по половине электрона. Подробно принципы
расчета и описания связи в гидридах бора и карборанах приведены в
монографии Липскомба 4.

При рассмотрении высокосимметричных анионов ВПН*~ и некоторых
карборанов оказалось удобным описывать эти структуры в предполо-
жении наличия молекулярных орбиталей, делокализованных по всей
молекуле43"46.

В последнее время Липскомб и сотр., используя метод Эдмистона —
Руденберга, определили для ряда карборанов степень локализации
орбиталей и ввели представление о дробных (fractional) трехцентровых
связях, т. е. по существу специфически делокализованных трехцентро-
вых связях, охватывающих более трех атомов молекулы 47~51. Было пока-
зано, что валентные структуры гидридов бора можно описать, не при-
бегая к открытым трехцентровым связям В — В — В50- 52. Так, например,
на рис. 7 изображена валентная структура декаборана53, применяв-
шаяся до 1971 г. и предложенная в работе51. С другой стороны, для
некоторых из исследованных карборанов были предложены валентные
структуры с участием открытых трехцентровых связей В — С — В 5 0 .

На рис. 8 приведены валентные структуры, предложенные в послед-
нее время для соединений 1,2-С2В4Н6

50, 1,6-С2В4Н6

50; 2,3-С2В4Н8

49, 2,4-
С 2В,Н 7

4 7 4 8 .
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Обобщив имеющиеся данные, Липскомб и сотр.50 сформулировали
несколько дополнительных выводов, суть которых заключается в сле-
дующем:

1) для многих боранов и карборанов существует единственно воз-
можная валентная структура (Β2Ηβ; Β4Ηι0; В5Нц; ВвН,0; 1,2-С2В4Н6; 2,4-
С2В5Н7; 2,3-C2BtH8 и др.);

Рис. 8

2) концепция дробных трехцентровых связей может быть успешно
применена для описания некоторых гидридов бора и карборанов;

,3) для описания гидридов бора привлечение понятия открытой трех-
центровой связи В — В — В не является обязательным;

4) только для некоторых карборанов в отличие от гидридов бора
оказывается целесообразным использование понятия открытой трех-
центровой связи при описании валентной структуры.

Исходя из того, что атомы углерода в карборанах участвуют в обра-
зовании трехцентровых и двухцентровых связей так же, как и атомы
бора, и учитывая, что заряд ядра углерода на, единицу больше, чем
заряд ядра бора, можно ожидать появления избыточного положитель-
ного заряда на атомах углерода (по крайней мере по сравнению с экви-
валентными в структурном смысле атомами бора). Многогранники
ΒηΗ*2- имеют заряд (2—), и этот заряд в симметричной, например,
икосаэдрической структуре, распределен по всем атомам бора равно-
мерно. Замена двух структурных ВН единиц на две СН-единицы при-
водит в целом к нейтральной молекуле. Два «лишних» электрона
(в В„Н„2~) остаются, но оказываются не локализованными, а распреде-

ленными по всей молекуле. В результате атомы углерода несут значи-
тельный положительный заряд.

Некоторые химические свойства карборанов и функциональных
групп, связанных с углеродом, обусловлены избыточным положитель-
ным зарядом на атомах углерода. Это проявляется в кислотности
С—Η-протонов, в расщеплении связей С—С и С — элемент с замести-
телем в некоторых функциональных производных карборанов, в спектрах
ЯМР 13С и в других физико-химических свойствах. Этим же можно объ-
яснить и электроноакцепторныи эффект соответствующей карбораниль-
ной группы для изученных карборанов.

Наличие положительного заряда на атомах углерода приводит к
«стягиванию» электронной плотности соседних атомов бора, и именно
по этим атомам карборанового ядра идут нуклеофильные реакции, в то
время, как злектрофильные реакции идут по атомам бора, наиболее
удаленным от углерода44· " .

Общие представления о химических реакциях и их возможных меха-
низмах рассмотрены в VI главе.
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III. ПОЛУЧЕНИЕ, СТРОЕНИЕ И СВОЙСТВА КЛОЗО -КАРБОРАНОВ

С2В3Н5—Дикарба-клозо-пентаборан(5).
Из трех возможных изомеров низшего представителя клозо-карбо-

ранов известны два—1,2- и 1,5-С2В3Н5 (рис. 9). Термодинамическая
стабильность изомеров карборанов С2В3Н5, согласно расчету методом
МО, уменьшается в ряду 1,5->1,2->2,3-53. Из этих изомеров 1,5-С2В,Н5

является наиболее доступным и изученным. Изомер 1,2-С2В3Н5 в виде
С,В-диметильного производного в смеси с другими карборанами был
получен Граймсом5'· " реакцией ацетилена и диборана в электрическом
разряде. На основании данных ЯМР ИВ, ПМР, ИК- и масс-спектро-
метрии для этого соединения была предложена структура с метальными
группами в положениях 2 и 3.

/,2-CtB,H5

Рис. 9 Рис. 10

Изомер 1,5-С2В3Н5 был обнаружен в продуктах пиролиза ацетилена
и диборана3. В смеси с другими карборанами он образуется также в
реакции пентаборана(Э) с ацетиленом в электрическом разряде".
Разработаны способы получения низших карборанов с высокими выхо-
дами5 6"5 8. Взаимодействие пентаборана(Э) и ацетилена в потоке при
500—600° с использованием водорода в качестве газа-носителя при-
водит с 70%-ным выходом к смеси низших карборанов, в которой содер-
жится около 40% 1,5-С2В3Н5

5в. Пиролиз 2,3-СгВ4Н8 три 450—460° в тече-
ние 10 сек дает со 100%-ным выходом (конверсия 25—30%) ту же смесь
карборанов, содержащую 40% 1,5-С2ВзН5

57· 58. Структура карборана
была установлена по данным ЯМР "В, ПМР, ИК- и масс-спектромет-
рии26. Точная молекулярная структура 1,5-С2В3Н5 определена методом
электронографии59.

1,5-С2В3Н5 устойчив при комнатной температуре к действию воздуха,
воды, углекислого газа, ацетона. При комнатной температуре карборан
в смеси с B2D6 обменивает атомы водорода, связанные с бором, на дей-
терий2". Химическая устойчивость этого соединения объясняется высо-
кой электронной симметрией. Нарушение симметрии при введении
полярных заместителей приводит к снижению стабильности60. Так,
например, аддукт 1,5-С2В3Н5 с триэтиламином и продукт галогениро-
вания карборана устойчивы лишь при низкой температуре (—78°С).
При повышении температуры эти соединения разрушаются. С другой
стороны, производные карборана с неполярными заместителями устой-
чивы. При нагревании 1,5-С2В3Н5 до 350° в течение 9 часов в запаянной
ампуле происходит димеризация с образованием В — В-связи между
двумя бипирамидами — (С2В3Н4)2. Предполагается также образование
небольшого количества тримера — С2В3Н4(С2В3Нз)С2В3Н4. К интерес-
ному результату приводит реакция 1,5-С2В3Н5 с метилацетиленом. При
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165° за 24 часа с выходом 20% образуется В-(цис-1-пропенил)-1,5-
дикарба-клозо-пентаборан СгВ„Н4С3Н5— продукт гидроборирования аце-
тилена /слозо-карбораном 6°. При 300° 1,5-С2ВзН5 взаимодействует с ди-
бораном, давая с выходом менее 5% 3,6-C2BeH,0

ei.
СВ5Н7 — Монокарба-клозо-гексаборан(7). Соединение СВ5Н7 получа-

ется при распаде 1-метил-пентаборана(9) в электрическом разряде62.
Другой метод синтеза — пиролиз ал-
килпентаборанов(9)63. По данным
ЯМР "В, ПМР и ИК-спектроскопии,
СВ5Н7 имеет структуру октаэдра
(рис. 10). Интересно отметить, что мо-
стиковый атом водорода не локализо-
ван между двумя атомами бора, а со-
вершает таутомерные переходы с
AG=14 и 12 ккал/моль для СВ5Н7 и

/,г-сдн6 ^-CzMe СН3СВ5Нв соответственновз. Это про-
является в спектрах ЯМРИВ, в кото-

Рис ц рых при —30° С имеется три дублета
с интенсивностью 1:2:2, а при 110°С
вследствие быстрых переходов мости-

кового атома водорода между атомами бора в положениях 2,3,4,5, спектр
состоит из двух дублетов с интенсивностью 1 :4, т. е. атомы бора в по-
ложениях 2,3,4 и 5 оказываются неразличимыми этим методом. Пред-
полагается, что эти таутомерные переходы осуществляются через пере-
ходное состояние с мостиковым атомом водорода между атомами бора
в положениях 3 и 6 вз. Под. действием оснований в молекуле СВ5Н7 про-
исходит отрыв мостикового атома водорода с образованием аниона —
С В Л 8 4

С2В4Н6 — Дикарба-клозо-гексаборан(б). Получены оба возможных
изомера дикарба-клозо-гексаборана с 1,2- и 1,6- положением атомов
углерода (рис. 11). В смеси с другими карборанами они образуются в
реакции ацетилена с пентабораном в электрическом разряде65. Анало-
гичное взаимодействие ацетилена с дибораном приводит к смеси про-
дуктов, среди которых имеется 1,6-С2В4Нв

54· 55. В препаративном отно-
шении лучшим методом синтеза смеси изомеров С2В4Н6 является раз-
ложение С2В4Н8 под действием УФ-излучения66. Выход 1,2-изомера в
этой реакции достигает 15%, а 1,6-изомера 20%; наряду с этим обра-
зуется 1,5-С2В3Н5—15%. С низким выходом (3—5%) 1,2-С2В4Нв полу-
чается при пиролизе С2В4Н8 при 450° в течение 0,5 сек, выход 1,6-изо-
мера в этой реакции около 20% ".

По данным ЯМР, ИК- и масс-спектрометрии, для 1,2- и 1,6-С2В4Н6

была предложена структура октаэдра (рис. И) 2 7 . Точная молекулярная
структура 1,6-С2В5Н6 в газовой фазе определена методом дифракции
электронов59· 67. Структуру 1,2-С2В4Нв

68 и 2-С1-1,6-С2В4Н5

69 изучали
методом микроволновой спектроскопии. Исходя из полученных данных,
авторы69 делают вывод об отсутствии какого-либо дополнительного
взаимодействия атома хлора с ядром карборана, т. е. доля π-связи
В-С1 в 2-С1-1,6-С2В4Н5 практически равна нулю.

1,6-изомер термодинамически стабильнее 1,2-изомера на
15 ккал/моль70· 71 и при 250° последний количественно переходит в
1,6-С2В4Н6

72. Изучены некоторые химические свойства только одного из
изомеров—1,6-С2В4Н„. Карборан устойчив при комнатной температуре
на воздухе, не реагирует с водой, ацетиленом; с B2D6 обмениваются ато-
мы водорода, связанные с бором27. Реакция 1,6-С2В4Н6 с трехкратным
избытком триметиламина при комнатной температуре в течение 11 дней
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приводит к образованию 5-Me3N
+(2,4-C2B4H6)~. Основание вносит

дополнительную пару электронов в ядро /слозо-карборана и превращает
его в лроиэводное ншЗо-карборана 2,4-С2В4Н8

 73. Из 1,6-С2В^6 при взаимо-
действии с BuLi в эфире при комнатной температуре медленно образу-
ется дилитиевое производное LiCB4H4CLi; реакция последнего с Mel
приводит к С,С-диметильному производному, а обработка одним же-
Mel и далее бромом дает МеСВ4Н4СВг. Взаимодействие с электрофиль-
ными агентами протекает по атомам бора. Так, бромирование в при-
сутствии А1Вг3 дает 2-Вг-1,6-С2В4Н5

 7\ а иодирование в присутствии А121е

приводит к образованию 2-1-1,б-С2В4Н5

75. Иод-карборан с триметил-
амином дает четвертичную аммониевую соль [Me3N

+C2B4H5]I~, что*
говорит о подвижности атома I связи В — I.

Рис. 12

Обработка 1,6-С2В4Н6 нафталиннатрием с последующим добавле-
нием СоС12 и NaC5H5 и окислением воздухом приводит к смеси про-
дуктов, из которой был выделен 1,7,2,4- (СоС5Н5)2С2В3Н5 (3%) 7в. Этот
комплекс формально является производным тетрааниона С2В3Н5

4~.
С2В5Н7 — Дикарба-клозо-гептаборан(7). В этом случае возможны

четыре изомера. Из них получены только два —2,3- и 2,4-С2В5Н7

(рис. 12). 2,3-изомер выделен с выходом около 1,5% в виде С,С-диме-
тильного производного из смеси с другими карборанами, образую-
щимися в реакции В8Н12 с диметилацетиленом. Структура соединения
определена методами ЯМР и ИК-спектроскопии40.

Изомер 2,4-С2В5Н7 более доступен и подробнее изучен. Впервые он
был получен в реакции В5Н9 с ацетиленом в электрическом разряде 2 6 · 2 7.
С выходом до 40% этот изомер образуется из С2В4Н8 при пиролизе при
450° за 10 сек. Пиролиз при температуре выше 300° в течение 8 часов
приводит к единственному летучему продукту реакции—2,4-С2В5Н7;
выход достигает 38% 57· 58· " . Этот карборан образуется также наряду
с другими продуктами из смеси диборана и ацетилена в электрическом
разряде54· 55. Строение 2,4-С2В5Н7 было предложено на основании дан-
ных ЯМР, ИК- и масс-спектрометрии " . В дальнейшем структура пента-
гональной бипирамиды подтверждена данными микроволновой спектро-
скопии 78. В результате изучения колебательных спектров 2,4-С2В5Н7 и
Двух других низших карборанов—1,5-С2В3Н5 и 1,6-С2В4Н6 — было сде-
лано отнесение частот всех линий, определены интегральные интенсив-
ности линий и рассчитаны константы поляризации 7Э.

Изомер 2,4-С2В5Н7 реагирует с BuLi в эфире с образованием дилити-
евого производного. Исходя из литийпроизводных, получены С-метил,
С,С-диметил, С-бром и С-(триметилсилил) производные 2,4-С2В5Н7. При
обработке карборана спиртовой щелочью происходит полная деструк-
ция8 0. Электрофильные реакции протекают по атому бора в поло-
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жекии 5. Например, бромирование в присутствии А1Вг3 приводит к
5-Вг-2,4-С2В5Н7

 8°, а хлорирование — к 5-С1-2,4-С2В5Н7

81. В условиях
радикального хлорирования образуется смесь всех изомеров 1-, 3- и
5-С!-С2В5Нв.

В реакции изотопного обмена с B2De при комнатной температуре
участвуют, атомы водорода, связанные с В(3), В (5) и В (6), а при
нагревании до 100° обмениваются и атомы водорода у В(1) и В(7) 8 2 .

При действии нафталин-натрия на раствор 2,4-С2В5Н7 в ТГФ с даль-
нейшей обработкой СоС12 и NaC 5H 5 и окислением воздухом, образуется
смесь соединений, восемь из которых были выделены83. Два из них
являются производными дианиона С2В5Н7

г- и тетраниона С2В*Н7

4~.
Кроме того, имеются одно- и двухъядерные комплексы (C5H5)Co(CjB t.He),

Т(С,Н,)Со],(С1В4Н,), (C 5H 5)Co(C 2B eH 8) и [(С5Н5)Со]2(С2В6Н8), являю-
щиеся продуктами диспропорционирования полиэдрического карборано-
вого ляганда С2В5Н7. Механизм диспропорционирования не установлен.

Обработка реакционной смеси, полученной при восстановлении
С2В5Н7, FeCl2 и NaC 5H 5 с последующим окислением кислородом, при-
водит к образованию преимущественно 5-[(2)-2,4-С2В5Н„]-1,2,4-
C5H5Fe inC2B4H5 и небольшого количества l,2,4-C5H5FenHC2B4He и 5-R-
l,2,4-C5H5FeUIC2B4H5, где R = C 1 0H 7H (следы). Интересно отметить, что
аналогичные комплексы железа с карборановым лигандом образуются
непосредственно из 2,4-С2В5Н7 и Fe(CO) 5 при нагревании их в газовой
фазе. Выделены 1,2,4- (СО) 3 Fe i n C 2 B 4 H e и 5,1,7- (СО) 3 Fe m C 2 B 5 H 7

 8\
СгВвН8—Дикарба-клозо-октаборан(8). Возможны 6 структурных изо-

меров. Однако до настоящего времени получен только изомер 1,6-
С2В,;Н8. Впервые он был выделен с выходом около 12% в виде С,С-
диметильного производного из реакции гексаборана(Ю) с диметил-
ацетиленом33. Как наиболее вероятную авторы предложили структуру
додекаэдра (рис. 13). Хоторн и сотр. получили этот изомер в смеси с
другими карборанами при пиролизе C 2B 7H i 3; выход 1,6-С2ВвН8 достигает
30% м · 3 2 · 8 5 . Предложен также метод синтеза, основанный на пиролизе
С 2В 5Н 7 в присутствии В 2 Н в

8 6 . Расщепление 1,6-С2В6Н8 под действием
Me4NBH4 при нагревании в диглиме с последующей обработкой сухим
НС1 приводит к смеси монокарба-кыдо-боранов СВ5Н9, 1-МеСВ5Н8 и
3-МеСВ5Н8

87. Восстановление 1,6-С2ВвН8 нафталин-натрием в ТГФ с
последующей обработкой солями переходных металлов и NaC5H5 при-
водит к ряду π-комплексов переходных металлов с карборановыми
лигандами С 2 В в

8 8 .

1,4,5-С5Н6СоС2ВвН8 + 3,6,1,10-(С5Н5Со)2С2В,Нв̂

1(4,1%) П(7,3%)

111(7,9%) IV (10,5%)

На примере С- (фторфенил) -производных 1,6-дикарба-клозо-октаборана
•определены реакционные константы карборанильной группы: σ ί=+0,08;
σ κ °=— 0,0289.

С3В5Н7—Трикарба-клозо-октаборан(7). Соединение С3В5Н7 по праву
считается одним из самых интересных и необычных карборанов и явля-
ется представителем трикарба-клозо-боранов — соединений, которые
•согласно принципу изоэлектронности должны быть либо положительно
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заряжены, либо в результате отщепления одного протона от атома угле-
рода существовать как в целом нейтральная молекула. При этом два
атома углерода отличны от третьего, у которого имеется свободная пара
электронов.

Карборан С3В5Н7 получен пиролизом μ-8ίΗ3- или 4-SiH3-2,3-C2B4H7

с выходом 15—20% 39. По данным спектров ЯМР ИВ и ПМР, для карбо-
рана характерны быстрые переходы между двумя структурами а к б
(рис. 14), и наблюдаемые спектры ЯМР оказываются усредненными.
Так, спектр ЯМРИВ содержит три дублета с относительной интенсив-
ностью 2 : 2 : 1 , спектр ПМР — три квадруплета протонов, связанных с
>бором, и сигнал С — Η-протона с относительной интенсивностью 5:2.

Рис. 14

С3В5Н7 стабилен на воздухе, выдерживает нагревание до 250°. При
нагревании до 450° количественно протекает частичная деструкция и
образуется 2(4-С2В5Н7. «Судьба» отщепляющегося атома углерода не
прослеживалась.

С2В7Н9 — Дикарба-клозо-нонаборан(9). Возможны 6 изомеров. Изве-
стен изомер 4,5-С2В7Н9 (рис. 15), который получается при пиролизе
C2B7HU с выходом около 7% 32> 85 наряду с другими карборанами. Выход
С2В7Н9 повышается при пиролизе натриевой соли С2В7Н1 3

8 5. 4,5-СгВ7Н9

образуется также с выходом 30% в результате медленной реакции
1,6-СаВ0Н8 с В2Нв при комнатной температуре90. Структура соединения,
предложенная по данным спектров ИК и ЯМР 3 2 · 8 5 подтверждена рент-
геноструктурным анализом на примере 4,5-Ме2С2В7Н7".

Реакция электрофильного замещения в 4,5-С2В7Н9, как и ожидалось,
протекает по атому бора в положении 6 как наиболее удаленному от
атомов углерода. Были получены 6-Ме-, б-Et- и 6-Вг-4,5-С2В7Н8. Про-
дуктом исчерпывающего бромирования при 100° является тетрабром-
.производное92, а не пентабромид. Восстановление 4,5-С2В7Н9 натрием
в ТГФ с последующей обработкой СоС12 и NaC5H5 и окислением воз-
духом приводит к образованию трех комплексов—2,3,10-
С5Н5СоС2В7Н9 (I), 4,1,8-С5Н5СоС2В6Н8 (II) и 1,2,3,6-
(С5Н5Со)2С2В8Н10 (III). Соединение II—кобальтовый аналог железо-
карборана 4,1,8-С5Н5реС2ВбН8. Комплексы I и III—производные дианио-
иа С2В7Н9

2~ и тетрааниона С2В8Н10

4. На примере С-фторфенильных про-
изводных определены σ (=0,09; ση°——0,05 для 4-4,5-С2В7Н8-!группы.
По мнению авторов, ση° этой круппы больше, чем соответствующая кон-
станта для других карборанов89.

СВ9Н10" — Декагидро-монокарба-клозо-декаборат(1—). Возможны
два изомера. Один из них 1-СВ9Н10~ (рис. 16) получен по следующей
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реакции93- " :

Na 2 B 1 0 H 1 3 CN - ^ - - > С В 1 0 Н 1 2 Ы Н 3 ^ Ο Η , Η , Ο " " CB ] 0 H 1 2 NMe 2 -*

N a - Т Г Ф -» CB 1 O H- S + 2-CB^oH^

1 410°
l - ^ B 9 " l 0 ~T l - D H n i 2 •

При электрохимическом окислении Et tN
+CB9H i 0~ в ацетонитриле

протекает димеризация с образованием (Et4N
+)2B18C2Hie

2~. По данным
спектра ЯМР11В, полученное соединение имеет структуру димера, свя-
занного σ-связью между 10 и 10' атомами бора94. Хлорирование CB9Hio"
в водном растворе при комнатной температуре дает СВ9Н5С15". По дан-

Рис. 16

/,Л7-СгВ8Н„

ным спектра ЯМР И В, хлорирование протекает по атомам бора, удален-
ным от углерода. Аналогично протекает хлорирование димера с образо-
ванием В-октахлорпроизводног®94.

С2В8Н10—Дикарба-клозо-декаборан(Ю). Из семи возможных изо-
меров получены три—1,2-, 1,6- и 1,10-С2В8Н10 (рис. 17). 1,2-изомер
получается с выходом, близким к количественному, при пиролизе
5,6-С2В8Н12

95 или его Na-соли при 120—200° в вакууме96. 1,2-С2В8Н10

является также одним из продуктов термического разложения С2В7НИ

 40.
Строение карборана установлено методами ИК- и ЯМР-спектро-
скопии95' 86. Из химических свойств отмечается его способность участво-
вать в реакциях окисления и восстановления. При действии натрия в
ТГФ образуется дианион, а при протонировании этого дианиона образу-
ется 5,6-С2В8Н12 с 30%-ным выходом96.

1,2-С2В8Н10 —
2Н+

5,6-С2В8Н12.

Изомер 1,6-С2В8Н10 образуется при пиролизе С2В7Н13. Проведение
этой реакции в присутствии диборана увеличивает выход 1,6-С2В8Н10 до
41%. Побочно образуется около 8% 1,7-С2В10Н)2. Другие карбораны
выделены не были32· 85. При взаимодействии В2Н6 с натриевой солью
С2В7Н12~ и С2В7Н13 в эфирном растворе выход изомера достигает
7 5 - 8 5 % " .

Быстрый пиролиз 5,6-С2В8Н12 при 500° в вакууме дает смесь двух
изомеров 1,6-С2В8Н10 и 1,10-С2В8Н10

96. Строение 1,6- и 1,10-С2В8Н10 было
предложено на основании данных ИК- и ЯМР-спектроскопии32·85 и под-
тверждено рентгеноструктурным анализом на примере 1,6-Ме2-1,6-
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^J2B8H8

98. Из всех трех изомеров клозо-С2В8Н10 наиболее стабильным
является 1,10-изомер. 1,2- и 1,6-изомеры нацело превращаются в
1,10-изомер при нагревании до 300°. Из химических свойств следует от-
метить довольно высокую кислотность С—Η-протонов, которые легко
отрываются под действием сильных оснований (рКа 1,10-изомера состав-
ляет 27,3"). При взаимодействии 1,6- и 1,10-С2В8Н10 с BuLi образуются
дилитиевые производные, из которых получены различные С-замещен-
ные карбораны ioo~102. Действие водно-спиртовой щелочи на 1,6-С2В8Ню
приводит к частичной деструкции карборана, при этом элиминируется
атом бора в положении 2 и образуется С2В7Н12~. Аналогично протекает
реакция с пиперидином.

Рис. 19

Под действием кислот 1,6-изомер разрушается до борной кислоты,
реакция 1,6-С2В8Н10 с дибораном дает l,7-C2B10Hi2. Изомер 1,10-С2В8Н10

устойчив к действию как кислот, так и щелочей. При фотохимическом
хлорировании 1,10-МеС2В8Н8 образуется 1,10-(СС13)2-С2В8С18

100. Диа-
.нионы из 1,6- и l.lO-CaBsHio образуют широкий набор комплексов с
переходными металлами88· 103.

Определены значения d и aR°, равные +0,10 и —0,02 соответственно
для карборанильной 1,6-С2В8Н9-группы, и +0,05 и —0,01 для 1,10-
С2В8Н9 группы. Полученные данные свидетельствуют о слабом элек-
троноакцепторном эффекте этих групп. Этот эффект усиливается при
переходе от пятикоординационного к шестикоординационнооду атому
углерода (σκ- + 0,19 для 1-1,7-С2В10Ни-группы). При удалении атомов
углерода друг от друга, как и в случае C2B10Hi2, величина ая° умень-
шается 104.

СВ10Нп —Ундекагидро-монокарба-клозо-ундекаборат(1—). Возмож-
но 5 изомеров. К настоящему времени известен только один изомер —
2-карба-/слозо-ундекаборат(1—)42·93 (рис. 18). Спектр ЯМР "В на часто-
те 80,5 мгц для этого изомера состоит из трех дублетов с относительной
интенсивностью 1:5:4. Авторы полагают, что атом углерода находится
в положении 2, причем структура быстро перегруппировывается по ме-
ханизму dsd в структуру, ей эквивалентную (рис. 18). Поэтому в спектре
ЯМР "В атомы В в положениях 1, 4, 5, 8, а также в положениях 3, 6, 7, 10
11 оказываются неразличимыми, а атом в положении 9 дает сигнал с
относительной интенсивностью 1 " . Следует отметить, что для объясне-
ния наблюдаемого спектра может быть предложен другой механизм
изомеризации 2-СВюНц", который был использован Толпином и Липс-
комбом в случае ВиНн2~ (рис. 10)105. При этом, если в 2-СВ10Ни~
«раскрытие — замыкание» структуры осуществляется за счет атомов в
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положении 1, 4, 5, 8, соседних с атомом углерода в положении 2, в
спектре ЯМР "В также должны наблюдаться т,ри дублета с относитель-
ными интенсивностями 1:5:4, относящиеся к атомам бора в поло-
жении 9; 3, 7, 6, 10, 11; 1, 4, 5, 8 соответственно.

С2В9Н„—Дикарба-клозо-ундекаборан(П). Из 20 возможных изо-
меров этого карборана известен лишь один—2,3-С2В9НИ (рис. 20),
который образуется при пиролизе C2B9HU при 100° с выходом ~22%-
β этих же условиях выход С,С-диметильного производного из соответ-
ствующего дикарбаундекабората достигает 75% 1 0 в · 3 2. Строение C2B9Hi,
было предложено на основании данных спектров ЯМР.ИВ, ПМР и факта
образования оптически неактивного C2B9H,oPh из оптически активного·

Л7-/.-/^-СгВаН„

Рис. 20 Рис. 21

аниона C2B9H,,Ph~ (это свидетельствует о том, что через атомы угле-
рода проходит плоскость симметрии107). В дальнейшем эта структура
была подтверждена рентгеноструктурным анализом 108.

При окислении 2,3-С2В9НИ солями Fe 3 + или Н2Сг207 в водных рас-
творах происходит частичное разрушение исходного карборана с обра-
зованием С 2В 7Н 1 3

1 0 9 · 3 2. Действие хромовой кислоты на 2,3-02691-1,,
в бензоле при 0° приводит к продукту «окислительного гидроксилирова-
ния»—4,5- (ОН) 2-2,3-C2BsH9

110.
Нуклеофильные агенты с С2В9Нц дают аддукты типа

C 2 B 9 H H L
 i 0 6 · И 1 · 1 1 2 . При взаимодействии 2,3-С2В9Н„ с рядом оснований

Льюиса (L) происходит раскрытие клозо-карборановой структуры с
образованием 10-Ь-7,9-С2В9Ни~. В качестве L использовались Ви~,
Ме~, Н~, производные малоновой кислоты, карборанил-анионы —
С2В8Н9~, СгВ1ОНц~1И. Однако с другими основаниями Льюиса, такими,
как ЕЮ~, PPh3, NMe3, образуется 3-замещенное производное 3-L-7,9-
С гВ9Нн1 1 2. Образование в одном случае 10-замещенных, а в другом
3-замещенных дикарбаундекаборат-анионов может быть связано, по
мнению авторов112, с тем, что в одном случае при атаке L атом бора в
положении 1 в С2В9НИ отходит в сторону, противоположную атакую-
щему основанию Льюиса, и при этом образуется изомер Ю-Ь^.Э-СгВаНи,
а в другом — направление движения этого атома бора обратное и
образуется 3-L-7,9-C2B9H,, (рис. 21). Однако нам кажется такое объ-
яснение недостаточным (см. главу VI).

2,3-С2В9Н1) взаимодействует с двумя эквивалентами Na в ТГФ,
причем второй эквивалент присоединяется лишь в присутствии нафтали-
на, и при обработке реакционной смеси СоСЦ и NaC5H5 с последующим
окислением воздухом образуется смесь комплексов88. Величины σ» и σΒ°
для карборанильной 2-С2В9Н10 группы составляют +0,12 и 0,01 соответ-
ственно114· "*.
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CB1(Hi2~ — Додекагидро-монокарба-клозо-додекаборат{\—). Единст-
венно возможный изомер СВиН~2 (рис. 22) образуется наряду с СВ9Н1 (г
из цианодекаборана93·42. Строение карборана предложено на основании
данных спектра ЯМР И В, который содержит три дублета относительной
интенсивности 1:5:5. Карборан не окисляется в ацетонитриле на аноде
вплоть до потенциала 2,4 в94.

C2B10Hi2—Дикарба-клозо-додекаборан(12). Известны все три воз-
можных изомера—1,2-; 1,7- и 1,12-С2В10Н12 (рис. 23). Данные о хими-
ческих свойствах изомеров С2В10Н12 очень многочисленны, и поэтому мы
рассматриваем лишь наиболее общие их свойства. Более подробные
сведения можно найти в ряде обзорных работ2· 3· 15· 113.

Термодинамическая устойчивость изомеров карборана(12) изменя-
ется в ряду о>тп~р.

(О
(2)

А о Г R Η 4 6 0 > л 7 Г R Η1,^-^2^10^12 1 » ' - ^ 2 ^ ] 0 π 1 2 ·
βοο" .

l , 7 - C 2 B i 0 H i 2 — z l 1 И 2 - С 2 В 1 0 Н 1 2

При высокой температуре (уравнение 2) образуется равновесная
смесь m-изомера и р-изомераΙ1β. При действии сильных оснований при
комнатной температуре легко происходит отрыв протонов от атомов
углерода с образованием соответствующих карборанил-анионов.

Рис. 22

Величины рКа, определенные различными методами, для о-, гп- и
р-изомеров соответственно составляют 19; 24; 26 l i 7 и 23,3; 22,9; 301 1 8.
В жестких условиях при действии щелочей, как показал Хоторн и сотр.,
происходит расщепление о- и m-карборанового ядра с образованием
1,2- и 1,7-С2В9Н, 1,12-С2В10Н12 претерпевает аналогичное рас-
щепление в 2,9-С2В9Н12 только в 20%-ном растворе КОН в кипящем
пропандиоле, и то с невысоким выходом. Протонирование этого аниона
приводит к неполярному соединению 2,9-С2В9Н13

12°.
Стабильность изомеров карборана-12 изменяется в последователь-

ности o<lm<lp. Взаимодействие ди- и монометаллических производных
щелочных и щелочноземельных металлов с электрофильными агентами
приводит к С-производным. Злектрофильное замещение протекает по
атомам бора, наиболее удаленным от атомов углерода. В случае
1,2-С2В10Н12 замещение идет прежде всего в положение 9(12); 1,7-изо-
мер замещается в положение 9(10), а 1,12-изомер — в единственно воз-
можное положение 2. Легкость и скорость электрофильных реакций для
карборанов в триаде изменяется аналогично в ряду о>пг>р.

Окисление изомеров С2В10Н12 под действием КМпО4 в кислой среде
приводит к образованию всех возможных В-оксипроизводных121. Вое-
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становление под действием натрия в жидком аммиаке или ТГФ при-
водит к дианионам122, причем окисление дианиона, полученного из
1,12-карборана(12), дает 1,7-карборан(12), а окисление дианионов,
полученных из 1,7- и 1,2-карборанов(12) дает 1,2-карборан(12) 123· 124·
Обработка дианионов СоС12 или солями других переходных металлов и
NaC5H5 приводит к комплексам, в которых атом металла становится
тринадцатой вершиной многогранника125· 126. При протонировании диани-
онов образуются моноанионы — дикарбадодекабораты(1—). Структура
некоторых из них определена рентгеноструктурным анализом '"· 12i.
Молекулярная структура о-, т- и p-C2B10Hi2 определена методом элек-
тронографии 129. Величины о4 и σΒ° определены на примере фторфениль-
ных производных соответствующих 1,2- и 1,7-изомеров карборанов и
и равны +0,295; +0,004 и +0,213; —0,036 соответственно114.

IV. ПОЛУЧЕНИЕ, СТРОЕНИЕ
И СВОЙСТВА Η И ДО - И АРАХНО -КАРБОРАНОВ

1. //идо-карбораны

C2BSH7 — Дикарба-нидо-пентаборан(7). В случае С2В3Н7 возможны
три изомера. Единственный полученный из них—1,2-С2В3Н7—выделен
из реакции тетраборана(Ю) В4Н10 с ацетиленом в газовой фазе при 50°.
Структура (рис. 24) основывается на данных спектров ЯМР "В и
ПМР 13°. В газовой фазе при 50° карборан устойчив, но разрушается при
100°. В жидком состоянии уже при 25° происходит полимеризация с
образованием (СгВзН,)*. Полимеризация значительно ускоряется в при-
сутствии НС1, полярных растворителей и других полярных веществ.
В разбавленных неполярных растворах это соединение сравнительно
устойчиво. Приведенные ниже схемы иллюстрируют некоторые его
химические свойства131.

СаВ3Н7 + С2Н2 -> С4В2Н„ + тв. остаток·

С целью установления особенностей образования С4В2Н6 была исследо-
вана реакция С2В3Н7 с ацетиленовыми соединениями, меченными дейте-
рием и 13С. Показано, что алкин внедряется преимущественно по связи
С — В и в меньшей степени по связи С — С1 3 2.

С2В8Н7 + С2Н4

 BS BEt3 + B2H2Et4;
С2В3Н7 + ВМе3 -» ВаНв + Н2 + тв. остаток;
С2В3Н7 + NEt3 ->· С2В8Н7 · NEt3;
С2В3Н7 + NaH —r полимеризация;

С2В3Н7 + Вг2 -* Вг2С2В3Н7 ^ ВВг3 + НВг + тв. остаток.

7,2-СгВ3Н7

. Рис. 24
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С пентакарбонилом железа 1,2-С2В3Н7 образует π-комплекс"'. При
реакции (л-С2ВзН7)Со(я-С5Н5), аналога (jt-C2B3H7)Fe(CO)3, с гидридом
натрия с последующей обработкой СоСЦ и NaC5H5 образуется комплекс
типа [(п-С5Н5)Со]3(п-С2В3Н5), который представляет собой пример двух-
ядерного комплекса с тремя параллельными плоскими лигандами76.

СВ5На-Монокарба-нидо-гексаборан(9). Из двух возможных изо-
меров этого карборана известен изомер 2-СВ5Н9 с атомом углерода в
основании пентагональной пирамиды (рис. 25). Это соединение является
одним из продуктов пиролиза метилпентаборанавз. 2-Et-2-CB5Hs с выхо-
дом 3,3% образуется в реакции пентаборана с метилацетиленидом

Рис. 26 Рис. 27

лития13S. Метальные производные 2-СВ5Н8 являются также побочными
продуктами при получении 2,3-С2В4Н8

134. Полностью алкилированный
монокарба-«ыдо-гексаборан(9) МеСВ5Н3Ме5 является побочным про-
дуктом реакции ацетилена с тетраэтилдибораном135· 13в. Структура
СВ5Н9) предложенная на основании данных спектров ЯМР "В 1 3 7 · 138,
была подтверждена методом микроволновой спектроскопии139. Пиролиз
СВ5Н„ при 250° в течение 3,5 дней приводит к 1,7-С2В10Н12 и C2B7Hi3

1 4 0.
Такой метод синтеза высших карборанов из низших представляет опре-
деленный теоретический интерес *.

С2В4Н8 — Дикарба-нидо-гексаборан(8). Возможны три изомера этого
карборана, два из которых получены (рис. 26). 2,4-С2В4Н8 представлен
производным — внутренней аммониевой солью — C 2B 4HrN+Me 3 (см.
стр. 1384)73. Второй изомер — 2,3-С2В4Н8 — доступен и хорошо изучен.
С выходом около 40% это соединение образуется при пиролизе смеси
пентаборана(9) с ацетиленом при 235° в течение 40 часов72. Структура
карборана, предложенная на основании данных ЯМР ИВ, ПМР и ИК-
спектроскопии

34, 7 2 , 141 была подтверждена рентгеноструктурным ана-
лизом его С,С-диметильного производного142> 143. Колебательные спектры
незамещенного и С-метил-замещенных карборанов приведены и обсуж-
даются в работе144. Пиролиз 2,3-С2В4Н8 приводит к смеси низших клозо-
карборанов, и этот процесс является наиболее удобным методом синтеза
/оюзо-карборанов С2В3Н5, С2В4Н6 и C2B5H7

S7· 8S· 7V Реакции электро-
фильного галогенирования 2,3-С2В4Н8 и его С-метильных производных
идут по атомам бора, соседним с атомами углерода, принадлежащими
основанию молекулы145· 14в. Такое направление реакции не согласуется
с величинами зарядов, рассчитанными по методу ССП, согласно кото-
рым электрофильные реакции должны протекать по атому бора в поло-
жении 1. Для объяснения такого течения реакции авторы49 провели

* Х о т о р н и с о т р . 1 4 0 п р е д п о л а г а ю т п о л у ч и т ь l , 2 - C 2 B i o H i 2 , и с х о д я и з г . г ^ а
и В в Н ю , а т а к ж е и з у ч и т ь с о с т а в п р о д у к т о в , о б р а з у ю щ и х с я из В в Н ю и С3В3Н7 и
С4В2Н6.

4 Успехи химии, № 8
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сравнительную оценку связывающих орбиталей в молекуле и указали
на значительную роль орбиталей каркаса в ходе реакции (см. главу VI).

Изучен изотопный обмен 2,3-С2В4Н8 с D2 и B2De и получены различ-
ные дейтеропроизводные этого карборана147. При действии на эфирный
раствор С2В4Н8 гидрида натрия образуется дикарба-иыдо-гексабо-
рат(1—)-анион С2В4Н7~

148, который с алкилгалогенидами Si, Ge, В,
Pb, Sn, а также с хлорсиланом и хлоргерманом дает соответствующие
мостиковые производные, в которых атом элемента связан трехцентро-
вой связью с двумя атомами бора карборана14Э· 1М. Взаимодействие
SiH2Cl2 с двумя эквивалентами С2В4Н7~ в ТГФ при 0° приводит с

Рис. 28 Рис. 29

70%-ным выходом к соединению с двумя карборановыми лигандами,
связанными с SiH2 группой двумя трехцентровыми связями — μ,μ'-
SiH2(C2B4H7)2 (рис. 27) 151· 152. Полученные соединения с мостиковой
MR3 или MR2-rpynnon, содержащей непереходные элементы, являются
хорошими примерами, иллюстрирующими возможность образования
неклассической химической связи не только атомами бора, но и рядом
других неэлектронодефицитных элементов, в том числе и углеродом
(см. главу VI).

Реакция Na+C2B4H7~ с (jt-C5H5)Fe(CO)2I приводит сначала к
комплексу, в котором железо связано трехцентровой связью с карбора-
новым лигандом,— μ-[(π^ 5Η 5)Ρ6^Ο) 2Κ^ 2Β 4Η 7; это соединение с
90%-ным выходом может быть превращено в π-комплексы (jt-CsHsJFe11

(я-С2В4Н7) и (n-C 5H 5)Fe i n(n-C 2B 4H 6) 1 5 3 · 8 4. Взаимодействие Na+C2B4Hr
с NaC5H5 и СоС12 в ТГФ с последующим окислением воздухом приводит
к 1,7,2,3-(С5Н5Со)2С2В3Н5

76. К π-комплексам переходного металла с
карборановыми лигандами приводит также реакция 2,3-С2В4Н8 с избыт-
ком Fe(CO)5 при 240°. Этой реакцией получены 1,2,3-(СО) 3FeC2B4H6 и
1,2,3-(СО) 3FeC 2B 3H 7

1 5 4 · 8 4 .
СгВ3}Л.1—Трикарба-нидо-гексаборан{7). Из четырех возможных изо-

меров получен один —2,3,4-С3В3Н7 (рис. 28). С-метильные производные
этого карборана образуются при 50° в реакции тетраборана(Ю) В4Н10 с
ацетиленом в газовой фазе. Выходы метилпроизводных 2-Ме-С3В3Н»
2,3- и 2,4-Ме2С3В3Н5 составляют 3,3; 6,5; 5,3%, соответственно1"·156.
Взаимодействие В4Н10 с С2Н2—реакция первого порядка по В4Н10 и
нулевого по ацетилену. Предполагаемый механизм реакции включает на
первой, самой медленной стадии, образование В4Н8, который далее
быстро взаимодействует с ацетиленом, давая твердый полимерный оста-
ток (С2ВН4)Х (80%) и смесь летучих продуктов, в которой присутствуют
также 4-МеСВ5Н8, 2,3-С2В4Н8 и 2,3,4-С3В3Н7 с общим выходом менее
2% 15в. В ряде работ механизм образования трикарбагексаборана(7) и
его метильных производных изучали с использованием C 2D 2

1 5 β · 1 5 7. При
действии сильных оснований на 2,4-Ме2С3В3Н5 и другие производные
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С3В3Н7 происходит отрыв протона из мостикового положения с образо-
ванием соответствующих анионов. Обработка этих анионов DC1 при-
водит к μ-Ο-производным С3В3Н7

157· 158. Обработка аниона 2-МеС3В3Н 5

по
μ-υ-производным

бромидом пентакарбонилмарганца приводит к аддукту, в котором,
мнению авторов153, Мп связан σ-связью с атомом бора карборанового
лиганда. При нагревании аддукта выделяется два эквивалента СО и
образуется 2-Ме-1,2,3,4-(СО),МпС3В,Н5. К аналогичным комплексам
приводит нагревание в газовой фазе 2-Ме-С3В3Н6 и 2,3-Ме2-С3В3Н6 с
Мп2(СО) 1 0

1 5 8. „ т

С^Ъ2Н^—Тетракарба-нидо-гексаборан(6). Соединение С4В2Н6 завер-
шает семейство ныдо-карборанов С„В6-ПН1О_„, имеющих структуру пен-
тагональной пирамиды. Из
трех возможных изомеров
получен один, в котором все
атомы углерода расположе-
ны в основании пирамиды
(рис. 29). Полностью алки-
лированный карборан был
синтезирован по схеме15Э:
NaR.BC = CR + C1BR2 -*•
-> R2BRC=CRBR2->C4B2Re.
Незамещенный карборан
С4В2Н6 получен пиролизом
1,2-тетраметилендиборанаез. С 5—10%-ным выходом этот карборан
образуется также в реакции С2В3Н7 с С 2 Н 2

1 3 1 · 1 3 2 . Структура карборана
С4В2Н6 была установлена методами ЯМР "В, ПМР, ИК-спектроско-
пии 6 3 · 1 5 9 · 1 6 0 , а также микроволновой спектроскопией ш . По мнению ав-
торов ш , С4В2Нв можно рассматривать как аналог π-комплексов цикло-
пентадиенил-аниона, у которого один из атомов углерода основания и
атом переходного металла замещены двумя атомами бора, хотя это
только весьма формальное сходство.

С2ВеН10—Дикарба-нидо-октаборан(10). Из семи возможных изо-
меров получен лишь один —3,6-С2ВвН10 (рис. 30). Выход его в реакции
С2В3Н5 с дибораном менее 5%.

300°

Предполагается, что в условиях реакции из В2Н6 образуется В3Н7, кото-
рый и реагирует с С2В3Н5, давая С2ВвН10

 β1. Невысокий выход этого кар-
борана связан, по-видимому, с его неустойчивостью. Так, в жидком
состоянии 3,6-С2В6Н10 разрушается с образованием главным образом
С2ВвН8 и С2В5Н7. 3,6-С2ВвН10 является первым карбораном, изоэлектрон-
ным В„Н12. Структура соединения (1) установлена на основании данных
ЯМР ИВ и ПМР-спектроскопии. Авторы6Ι не исключают также возмож-
ность таутомерных переходов между эквивалентными структурами II и
III (рис. 30). В работе" приведены также величины межатомных рас-
стояний в молекуле.

С2В,Нц—Дикарба-нидо-нонаборан(11). Для этого карборана воз-
можно существование 25 изомеров положения атомов углерода в моле-
куле. Реакция октаборана(12) В„Н12 с ацетиленовыми соединениям»
приводит с выходом около 65% к смеси двух кидо-карборанов с семью и
восемью атомами бора в молекуле40·162. Незамещенный карборан
С2В7НИ интересен тем, что, по данным ЯМР "В, ПМР и ИК-спектро-
скопии, один из атомов бора, находящийся в положении 8, связав
σ-связями с двумя атомами водорода, т. е. это соединение является
первым примером карборана, содержащего ВН2-группу (рис. 31) ш .
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Обращает на себя внимание тот факт, что С,С-диметильное производное
этого карборана, полученное реакцией B8H i 2 с диметилацетиленом,
имеет строение, отличное от строения незамещенного С2В7НИ (рис. 31),
что отчетливо проявляется в спектрах ЯМР "В, ПМР 161. Рентгенострук-
турный анализ1 в з подтвердил структуру для Ме2С2В7Н9, предложен-
ную на основании ЯМР И В, ПМР и ЙК-спектроскопии4°. Структурные
различия и большая устойчивость С,С-диметильного производного
С2В7Н„ объясняются стерическим или электронным влиянием метильных
групп1вг.

сн.
N(CH3)3

Рис. 31 Рис. 32

CiB9H13—Монокарба-нидо-декаборан(13). Возможно 4 изомера
CiB9H,3. Известен изомер 6-CB9H1S( полученный в виде В9НцС-ЫМе3

(рис. 32). Структура карборана установлена на основании данных
ЯМР "В, ПМР и ИК-спектров42.

С2В8Н12—Дикарба-нидо-декаборан(12). Из 16 возможных изомеров
С2В8Н12 получено два—5,6- и 5,7-С2В8Н12 (рис. 33). Изомер 5,6-С2В8Н,2,
как уже отмечалось, является основным продуктом реакции окта-
борана(12) B8H i 2 с ацетиленом. С,С-диметильное производное получа-
ется аналогичной реакцией с диметилацетиленом. Строение карборанов
предложено на основании данных ЯМР ИВ, ПМР и ИК-спектроскопии,
а также на основании того факта, что при разложении С,С-диметильного
производного в пропионовой кислоте на паладиевом катализаторе обра-
зуется м-бутан40· 162. 5,6-С2В8Н,2 получается также с 90%-ным выходом
при окислении 7,8-С2В9Н12 в кислой среде Fe 3 + при 20° в течение
4 часов95. Как уже отмечалось, нагревание 5,6-изомера в N-этилпипери-
динборане дает 1,2-С2В8Н10

95

приведены в работе96:
Некоторые другие реакции 5,6-С2В8Н12

5,6-С 1 3 В 8 Н 1 2

500°
вакуум

1,10-С 2В 8Н 1 0;

_ 1ао-2 1,2-C2B8Hi0

200° Н 3 О+

Н 2

Взаимодействие 5,6-С2В8Н12 с ЕЮ~ приводит с небольшим выходом к
новому соединению класса арахно-карборанов — 6,9-С2В8Н14

 3β· Другой
изомер —5,7-С2В8Н12 (см. рис. 33) был получен в результате реакции
С2В7Н12~ с дибораном41. В этом соединении, по мнению авторов41, атом
В в положении 6 находится в sp-гибридном состоянии, причем одна
р-орбиталь является свободной. При взаимодействии с триметиламином
эта орбиталь и орбиталь с парой электронов азота образуют связь
В—N. Нагревание C2B8H12NMe3 до 150° приводит к образованию клозо-
1,6-С2В8Н10, а обработка безводным НС1 в СН2С12 при 80° дает исходный
карборан —5,7-C2B8Hi2. При обработке избытком НС1, кроме того, про-
исходит замещение атома водорода в· положении 6 на хлор и образуется
6-С1-5,7-С2В8Ни— карборан, имеющий, как и в незамещенном карборане,
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свободную р-орбиталь. Пиролиз хлоркарборана в вакууме приводит к
/слозо-2-С1-1,6-С2В8Н9, а обработка D2O дает С2В7НИО2, причем дейтерий
связан с атомами углерода " .

С^1^\и—Монокарба-нидо-ундекаборан{14). Из трех возможных
изомеров получены производные лишь одного с атомом углерода в от-
крытой грани (рис. 34). Анион этого карборана СВ10Н~13 может быть
получен либо из цианодекаборана93· 42, либо реакцией декаборана с
алкилизонитрилами

42, 93. 164-167 . Из химических свойств CB1OH~1S отмеча-
ются реакции электрофильного галогенирования. Реакция с Вг2 при-

Рис. 33 Рис. 34

водит к моно- и дибромпроизводным. Хлор при 0°С разрушает этот
анион. С иодом реакция не идет даже в присутствии катализаторов.
R3NCB10HI2 в реакциях электрофильного галогенирования менее акти-
вен 1в7, так, например, бромирование протекает лишь в присутствии
А1С13. Многочисленные С- и В-производные СВюН-13 описаны в работе4 2.
Из СВ1 0Ни

3~ и H3NCB10H10

2~ были получены π-комплексы с переходными
металлами " .

С2В„Н13—Дикарба-нидо-ундекаборан(13). Из 9 возможных изомеров
получены два соединения с атомами углерода в открытой грани и
изомер с 2,9-расположением атомов углерода120 (рис. 35). 7,8-, 7,9- и
2,9-С2В9Н13 получаются при протонировании соответствующих дикарба-
ундекаборат-анионов, которые получаются при щелочном расщеплении
1,2-, 1,7- и 1,12-С2В10Н12. Строение карборанов и их анионов предложено
на основании данных ЯМР ИВ, ПМР и ИК-спектроскопии30·31·32·106·
ид, 120 7,9-изомер значительно менее устойчив по сравнению с 7,8-изо-
меромзг.

О реакции термического разложения этих карборанов, которая при-
водит к клозо-2,3-С2В9Н1Ь уже упоминалось31·32. Взаимодействие
7,8-С2В9Н13 с триалкилалюминием и триалкилгалием приводит к
R2A1-C2B9H12 и соответствующему галлиевому производному 168. По дан-
ным спектров ЯМР ИВ и ПМР, А1Ме2-группа совершает таутомерные пе-
реходы между двумя эквивалентными позициями (рис. 36) iS9. Рентге-
ноструктурный анализ подтверждает вывод о «мостиковом» положении
А1Ме2-группы170. Нагревание H«do-B0C2H12MR2(M = A1, Ga) в бензоле
приводит к клозо- 1,2,3-RMC2B9H11. При нагревании до 450° эти соеди-
нения изомеризуются в металлокарборан с т — расположением атомов
углерода.

Реакция с TiCl4 как нидо-, так и /огозо-металлокарборанов приводит
к катализаторам, подобным катализаторам Циглера, в присутствии ко-
торых этилен полимеризуется при 25° С и 1 атм 168. 7,8-С2В9Н13 титрует-
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ся, как сильная одноосновная кислота 3 0 · 3 2 , а при действии сильных ос-
нований отрывается и второй мостиковыи протон 119.

Строение дикарба-ныдо-ундекаборат(1—)-анионов было определе-
но на основании данных спектров ЯМРиВ, ПМР и ИК. Мостиковыи
атом водорода в 7,8-С2В9Н12 осуществляет быстрые таутомерные пере-
ходы между положениями 9, 10 и 10, 11. В 7,9-С2В9Н12 мостиковыи атом
водорода связан с атомами в положениях 10, 11. Изучался также изо-
топный обмен 7,8- и 7,9-С2В9Н-12 и их производныхш. Из сравнения
спектров различных производных 7,8-C2B9Hi;r сделано отнесение линий
в спектре ЯМРИВ этого аниона 1 7 1 · 1 7 2 . 7,9-С2В9Н12 термодинамически бо-

Рис. 35

Z,9 С гВ 9Н, г

Рис. 36

лее стабилен, чем 7,8-изомер и при нагревании до 300° происходит изо-
меризация 7,8 в 7,9-С2В9Н12-

119· т .
Реакции электрофильного замещения 7,8-С2В9Н12~ протекают по от-

крытой грани с образованием 9-замещенных 7,8-С2В9Нц~. Так, напри-
мер, иодирование 12 в водноэтанольном растворе дает 9-1-7,8-С2В9Ни~.
Реакция окислительного замещения приводит к 9- и 10-замещенному
7,8-изомеру174·175. Алкилирование 7,9-С2В9Ни

2- дает 10-А1к-7,9-С2В9Н„-
(рис. 37)176. При окислении 7,9-С2В9Н12~ хромовой кислотой образует-
ся с хорошим выходом С2В7Н1 3

1 7 7. Осторожное окисление 7,8-С2В9Н12- в
кислой среде при —15° К2Сг207 приводит к стабильному карборану
С4В18Н22. По данным ЯМРИВ, ПМР, ИК- и УФ-спектроскопии предло-
жена структура, в которой два фрагмента С2В9Нц связаны двумя трех-
центровыми связями (рис. 38)178. Окисление 7,8-С2В9Н12- солями Fe3 +

в кислой среде, как уже отмечалось, приводит к 5,6-C2B8Hi2

 95. Много-
численные комплексы переходных металлов были получены с дикар-
боллид-ионами С 2В 9НИ

2- 2 · 1 9- 2 3 · т . Взаимодействие 7,8-С2В9Ни

2- с Gel2)

SnCl2, Pb(OAc)2 приводит к гетероаналогам трикарба-клозо-додекабо-
рана(П) 1 8 0 . Данные мессбауэровской спектроскопии 19Sn в случае со-
единения 3-Sn-l,2-C2B9Hu указывают на 5s2 характер внешней элек-
тронной оболочки атома олова Sn(II) Ιβ1. Из 7,9-С2В9Ни

2- было получе-
но аналогичное соединение с Ge. В реакции 7,9-С2В9Ни

2~ с SnCl2 обра-

сн,

СН31

Рис. 37
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зуется 2,3-С2В9НИ. Промежуточно образуется 3-Sn-l,7-C2B9H9

— ( 3 - S n - l , 7 - C 2 B » H u ) -> 2 , 3 - C 2 B , H u .

Взаимодействие дикарболлид-ионов с RBC12 приводит к восстановлению
икосаэдрической структуры, при этом образуется 3-R-C2B10Hn182-185.
Определены ы и σκ° для 7,8- и 7,9-С2В9Н12~ и соответствующих дикар-
боллид ионов 1 1 4 · 1 8 6 . Авторы 186 считают, что второй отрицательный за-
ряд в C2B9HU

2- располагается в основном на атомах бора, не лежащих
в открытой грани.

R

(R=CH3,C6H5)

. Рис. 39

С2В10Н14 — Дикарба-нидо-додекаборан(1А). Нейтральные соедине-
ния не получены. Анионы соответствующих «шЗо-карборанов образуют-
ся при протонировании дианионов (C2B10H12)

2~, полученных из 1,2-, 1,7-
и 1,12-С2В10Н12

187. Строение одного из изомеров С2В,0Н13~ по данным
рентгеноструктурного анализа приведено на рис. 39 1 2 7 · 1 2 8 .

2. Л/»алгно-карбораны

Лрахно-карбораны имеют общую формулу C 0- eBnHn + e. Этот класс
карборанов менее всего изучен. До настоящего времени получено лишь
два соединения, относящиеся к арахно-карборанам. Структура их от-
крытая, так же как и у нш?о-карборанов, и отличается лишь числом
атомов водорода в открытой грани. Наиболее объективный признак,
характеризующий клозо-, нидо- и аршгно-карбораны,— электронная
структура соединений этих классов (см. главу V).

Рис. 40 Рис. 41
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С 2В,Н 1 3— Дикарба-нидо-нонаборан (13). Возможно 19 изомеров
С2В7Н,3. Единственный полученный изомер 6,8-С2В7Н13, как уже отме-
чалось, образуется в результате окисления в водном растворе
С2В9НИ

 3 5 · 3 2 или окисления хромовой кислотой 7,9-C2B9H~i2 "\ Строе-
ние С2В7Н13 (рис. 40) установлено на основании данных ЯМР"В, ПМР
и ИК-спектроскопии, а также изучения химических свойств этого кар-
борана "•32. Данные рентгеноструктурного анализа С,С-Ме2-С2В7Ни

приведены в работе 188. Реакция термического разложения, как уже от-
мечалось, приводит к смеси /оюзо-карборанов С2ВвН8, С2В,Н9 и
С2В8Н10

 3 2 · 8 5 . Взаимодействие с сильными основаниями приводит к от-
рыву двух «аксиальных» протонов от атомов углерода с образованием
С2В7НИ

2~, при обработке которого D+ получается С2В7НИО2

 32. Взаимо-
действие С2В7НИ

2~ с СоС12 приводит в зависимости от условий реакции
к π-комплексам, содержащим два карборановых лиганда С2В7Н„2~ с
атомами углерода в 1,6- или 6,9-положениях. Термической изомериза-
цией получен 1,10-изомер189. Реакция С2В7Нц2~ с Мп(СО)5Вг,
Мп2(СО)1 0 ) Мп(СО)2С1 в ТГФ приводит к 1,4,6-(СО)3МпС2В6Н8-

 19°.
С2В8Н14—6,9-Дикарба-нидо-декаборан (14). Как уже отмечалось,

этот карборан образуется при действии EtO~ на 5,6-С2В8Н12. Строение
карборана предложено на основании данных ЯМРИВ, ПМР, ИК-спек-
троскопии (рис. 41) 36.

V. ОСОБЕННОСТИ ИЗМЕНЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

Накопленные экспериментальные данные о свойствах клозо-, нидо-
и арсшо-карборанов могут быть обобщены и позволяют выявить взаи-
мосвязь между структурой и изменениями физико-химических и хими-
ческих свойств в свете особенностей трехцентровых химических связей
в рассматриваемых соединениях. В таблице приведены некоторые физи-
ко-химические параметры карборанов, такие, как межатомные расстоя-
ния I, частоты валентных колебаний С—Η-связи (VO-H), величины хи-
мических сдвигов (τ) протонов С—Η-связи, указаны также координа-
ционные числа (к. ч.) атомов углерода и бора. При сопоставлении зна-
чений межатомных расстояний в карборанах и других подобных струк-
турах обращает на себя внимание факт увеличения расстояний между
атомами каркаса молекулы по сравнению с длинами связей в классиче-
ских органических и борорганических соединениях. Так, например, рас-
стояние С—С в 1,2-С2ВюН12 составляет 1,65 А129, что значительно боль-
ше /с-с σ-связи в различного типа органических соединениях (/ с -с^
^ 1,55 А 1 9 4). Расстояние В—С в этом же карборане составляет величи-
ну порядка 1,71 А129, а в 1,7-изомере—1,73 А, в то время, как в триме-
тилборе длина С—В-связи равна 1,578 А195. Увеличение межатомных
расстояний С—С и В—С в карборанах, безусловно, отражает специфи-
ческий характер химической связи в этих соединениях. Очевидно, что
увеличение межатомных расстояний С—С и В—С связано с недостат-
ком электронов и спецификой трехцентровой связи. В отличие от свя-
зей каркаса, где и двухцентровые связи в общем случае могут не сов-
падать по направлению с прямой, соединяющей два атома, внешние
связи С—Η и В—Н, а также связи с заместителями являются обычны-
ми σ-связями. Вследствие этого характеристики этих связей в сопостав-
лении с закономерностями, известными в органической и элементоор-
ганической химии, могут дать полезную информацию о состоянии ато-
мов, составляющих каркас молекулы. Известно, что в органических со-
единениях длины С—Н- и С—Ме-связей зависят от гибридного состоя-
ния атомов углерода и имеют значения—1,09, 1,54 (sp3); 1,07, 1,49—
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—1,53 (sp2); 1,06, 1,46 A (sp) соответственно. Длины связей С—Η и С—
—Me в клозо-карборанах составляют величину порядка 1,1 и 1,53 А, в
ншЗо-карборанах—1,07 и 1,51 А, соответственно. Сравнение этих дан-
ных (см. таблицу) свидетельствует о преимущественной 5р3-гибридиза-
ции атомов углерода в большинстве клозо-карборанов * и sp2 в нидо-
карборанах. Определенное уменьшение длины связи С—Me и особенно
С—Hal в ряде случаев связано, по-видимому, со значительным электро-
ноакцепторным характером карбонильных групп. Например, длина
связи С—I в иг-Га-иг-СаВюНн составляет 2,082 А196, а в Mel
2,132 А194, в то же время в CF3I эта величина равна 2,101 А197.

О состоянии атомов бора в многограннике, принимая во внимание
а-харакхер связи с заместителем, можно было бы судить также по
свойствам заместителя, связанного с ним (Н, Hal, Alk и т.д.); однако
отсутствие достаточных экспериментальных данных пока не позволяет
провести такое сопоставление. Расчеты по методу МО свидетельствуют
об sp3- или 5/?2-гибридизации 4 · 2 4 , а в теории трехцентровых орбиталей
предполагается 5/?3-гибридное состояние атомов бора 4. Несмотря на не-
достаток экспериментальных данных, некоторые выводы об особенно-
стях состояния атома бора можно сделать из формального сопоставле-
ния координационного числа с возможным распределением элек-
тронной плотности по атомам многогранника. Так, нетрудно заметить
тенденцию к увеличению расстояния между атомами многогранника с
ростом к. ч. Интересный подход к этому вопросу предложил Вейд на
примере борановых анионов ВПНП

2~. Исходя из того, что связь в клозо-
структурах осуществляется п + 1 парой электронов198, автор определил
формальное число электронов, приходящихся на каждое ребро рассмат-
риваемого многогранника, т. е. «порядок связи» между атомами, в за-
висимости от η и числа соседних атомов (xt и хг) **:

«порядок связи» =

и уменьшение межатомного расстояния с уменьшением к. ч. связал с
увеличением «порядка связи». Поскольку наблюдаемое изменение ме-
жатомного расстояния больше ожидаемого, Вейд приходит к выводу,
что в данной молекуле электронный заряд распределен неравномерно
и на атомах с меньшим к. ч. он больше, чем на атомах с большие
к. ч.1 9 9.

Очевидно, что отсутствие прямой зависимости между величинами
межатомного расстояния и к. ч. можно объяснить, если рассмотреть
распределение п + 1 пары электронов не по атомам многогранника, а по
локализованным связывающим орбиталям. Каждый атом предоставляет
для образования связей в ядре три атомные орбитали, т. е. участвует в
построении трех связывающих орбиталей, и число электронов, связыва-
ющих центральный атом с его χ соседями, равно шести. Таким образом,
с увеличением к. ч. будет уменьшаться формальное число электронов,
приходящихся на данный атом. Большая термодинамическая устойчи-
вость изомера данного карборана, в котором атомы углерода имеют
меньшее к. ч. ***, может быть связана с тем, что в этих изомерах избы-
точный положительный заряд на атомах углерода (см. главу II) ком-

* В ряде случаев, например в молекуле 1,6-С2В8Ню, атомы углерода находятся,
по-видимому, в 5/)2-гибридном состоянии.

** х-к. ч.— i, т. е. внешняя σ-связь не учитывается.
*** Во всех известных незамещенных карборанах атомы углерода занимают поло-

жение с минимальным координационным числом. Если известно несколько изомеров
данного карборана, то изомеры, в которых атомы углерода имеют большее к. ч., изо-
меризуются в изомеоы с меньшим к. ч.3, например: и б С В Н Ы О С В Н 3 2
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2,3-Ο2Β()Ηιι

2,3-Me2-C2BeH,

1,2-СгВ10Н12

1,7-C2B1(>Hi2

l,12-C2B l 0Hi2

Нидо-
2-CB6H9

2,3-C2B4H8

2,3-Me2-C2B4He

2,3,4,5-С4В2Нв

3,6-C2BeHio

4,5-C2B7Hu

5
6;7

5
6;7

6
6

6
6

6
6

4
5; 6

4
5;6

4
5;6

4
4;6

4
4;6

4;5
5;6

—

1,52

1,15

1,15

1,15

—

1,04

1,506

—

—

—

—

—

1,65

—

—

—

1,418

1,432

С(2)—С(3) 1,436
С(3)—С(4) 1,424

—

—

—

(5)1,60—1,70(6)
(5)1,67(7)

(6)~1,711(6)

(6)~1,726(6)

(6)1,710(6)

(4)1,530(5)
(4)1,713(6)

(4)1,509(5)
(4)1,748(6)

(4)1,520(5)

(4)1,762(6)

(4)1,541(4)
(4)1,703(4)

(5)1,617(5)
(5)1,697(6)

—

—

(6)~1,80(6)
6)2,05(7)

(6)1,793(6)

(6)1,805(6)

(6)1,772-1,792(6)

(5)1,759-1,782(6)
Ό) 1,781-1,830 (6)

—

(5)1,768(6)

(6)1,705(6)

(4)1,886(2)

(5)1,704(6)
(6)1,721(6)

4,2

—

6,5

7,15

7,32

4,62

—

7,97

4,24
5,38

—

7,19;8,05

1
3060

2885

3080

3071

3067

—

3040,3032
(3044,3032)

2980,2954,
2922

(2960,2927,
2869)

2950

2975,2965
2878,2865

3048,2982

+0,12
—0,01

—

+0,295
+0,004

+0,213
—0,036

—

—

—

—

—

—

3 2 б в , 108а·

П4 Г 115Г

129а, 192б, 114Г

I29a, 1926,

129а. 192б

137а, 138б, 139б

34 б , 77 б , 144В, 142а

143а

34 б

6 3 б в , 159 б в , 160 б в

161а

6 1 а в

162 б в , 163а

η

Я
о
X
X

а
о

S
X

я
си
о

•о
σν
о



Карборан

6,7-Ме 2-С 2В 7Н 9

9,12-С2В 1 0НГ3

9,12-Me2-C2Bi0H7

Арахно-
6,8-С 3 В 7 Н 1 3

6,8-Ме 2 -С 2 В 7 Н и

к. ч.*
С
В

5
5;6

4;5
5;6

4;5

5;6

5
5;6

5
5;6

(к. ч. С)·*

<C-R , A
(R = Н,Ме)

1,47-1,53

—

(5)1,520;
(4)1,518
С (12)-

—Η 0,957

С—Η 0,98
С—Me 1,527

'с-о А

' 1,55

—

—

—

(к. ч. С) 1С_Ъ

А (к. ч.В )**

(5)1,60-1,75(5)
(5)1,60-1,65(6)

—

(4)1,642(6)

(5)1,625 (5)

(5)1,670(6)

(5)1,700(5)
(5)1,671-1,714(6)

(к. ч. В ) / В _ в

А(к. ч. В)*·

(5) ~1,80 (6)
(6)1,69-1,81(6)

—

(5)1,72—1,867(6)

(6)1,757—1,847(6)

(5)1,732(6)
(6)1,710-1,826(6)

Спектр ПМР
***

хс_нмд.

7,68;8,72

7,48;6,79
(дубл.)

7,19 (дубл.)

6,45(кварт.)

8,32 (сингл.)

8,67 (дубл.)

9,9; 10,77

8,7; 10,73

ИК-(КР)-спектр
VC-H·

ел-»

2965,2935

—

—

3055,2910

2925

—

—

—

—

Ссылки на литерату-
ру ·***

162бв, 163а

187б, 128а, 193б

32б в

188а

* Приведены координационные числа (к. ч) атомов углерода (верхние цифры) и атомов бора (нижние цифры).
** В скобках указаны к. ч. атомов каркаса, расстояния между котооыми приводятся.

*** t = 10—β; Для 1,6-С.В,Н}„ η скобхах указаны к. ч. соответствующих атомов углерода. •
**** д — данные по м?жатомньм расстояниям; б — данные по спектрам ПМР; β — данные по ИК- и Рам.ш-спектрпм;

Μ

η

3

ω
>
01

"О
си

п>
а

О

- данные по реакционным константам,
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пенсирован в большей степени по сравнению с изомерами, в которых
атомы углерода имеют большее к. ч.

С увеличением числа атомов п, образующих многогранник (вслед-
ствие уменьшения величины п+1/п — среднего числа пар электронов на
каждом атоме полиэдрической молекулы), увеличивается избыточный
положительный заряд на атомах многогранника, в том числе и на ато-
мах углерода с одинаковым к. ч., что проявляется в свойствах С—Н-
связей (см. таблицу).

Изучая связь между отдельными классами карборанов, гидридов
бора и родственных структур, Вейд отметил закономерность, которая
выражается в том, что /г-атомные молекулы с клозо-структурой имеют
п + 1 , с нидо—п+2 и с арахно—п+3 электронные пары, связываю-
щие каркас молекулы. Присоединение пары электронов к клозо-струк-
туре В„Н„2~ приводит к ныдо-структуре ВПНП

4~, причем происходит пе-
рестройка скелета с образованием фрагмента следующего многогран-
ника с одной недостающей вершиной 198. Молекулы клозо-карборанов,
присоединив два электрона, превращаются в электронные аналоги нидо-
карборанов, что соответствует нидо-структуре производных дианионов
карборанов, а присоединив четыре электрона, переходят в аналоги ара-
л>го-карборанов. Присоединение по одному протону на каждую едини-
цу отрицательного заряда дает структурные аналоги нидо- и арахно-
карборанов 2°°. Например:

2,3-С2ВвНа Д С2В,Н^-^ 7,9-С2В,НГ2

1,2-С2В8Н10Д С,В,Н£ ™U 5,6-С2В8Н12

VI. ВОЗМОЖНЫЕ МЕХАНИЗМЫ ХИМИЧЕСКИХ РЕАКЦИИ КАРБОРАНОВ

Природа химической связи в карборанах и гидридах бора проявля-
ется не только в особенностях их строения, но, естественно, и в харак-
тере протекания химических реакций, таких, как восстановление, окис-
ление, взаимодействие с нуклеофильными и электрофильными агента-
ми. Эти реакции мы попытаемся рассмотреть как реакции с участием
локализованных трех- и двухцентровых связей.

1. Восстановление карборанов

Одной из самых общих и интересных реакций карборанов, главным
образом клозо-карборанов, является способность присоединять электро-
ны при действии щелочных металлов. Присоединение электронов к кло-
зо-структуре с η атомами в многограннике сопровождается перестрой-
кой карборановой молекулы, образующиеся при этом анионы выде-
ляют в виде их комплексов с переходными металлами либо продуктов
протонирования, причем атом металла становится в недостающую вер-
шину многогранника с п + 1 атомами.

В свете представлений о трехцентровых связях присоединение двух
электронов формально можно представить следующим образом. Элек-
троны, возможно последовательно, присоединяются по трехцентровой
связи с образованием двухцентровой связи и атомной орбитали с па-
рой электронов. При этом на промежуточных стадиях процесса перехо-
да электронов возможно их размещение на несвязывающей, если тако-
вая имеется, или ближайшей разрыхляющей орбитали (рис. 42). Да-
лее, вероятно, происходит перестройка системы связывающих орбита-
лей с образованием двух двухцентровых орбиталей из атомной орби-
тали, заселенной парой электронов, и второй трехцентровой орбитали.
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Таким образом, формально две трехцентровые орбитали перестраива-
ются в три двухцентровые, а пара электронов располагается на возник-
шей дополнительной связывающей орбитали. Образующиеся связыва-
ющие двухцентровые орбитали, по-видимому, в большей или меньшей
степени делокализованы, т. е. возможно образование (трех) связываю-
щих пятицентровых орбиталеи, которые конструируются из атомных
орбиталеи атомов открытой грани (рис. 42). Последняя структура на
этом рисунке отражает не реальное направление атомных орбиталеи, а
возможность образования связывающих орбиталеи, общих для атомов
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Рис. 42

открытой грани (по аналогии с представлениями Хоторна о характере
связи в комплексах переходных металлов с карборановыми лигандами
С2В9Нц2~ и в самих дикарболлид-ионах " 9 ) .

На схеме (рис. 42) приводится предполагаемый механизм присоеди-
нения электронов к клозо-карборановой молекуле (приводится фраг-
мент возможной валентной структуры). Два из пяти атомов — атомы
углерода. Из схемы видно, что присоединение электронов сопровожда-
ется раскрытием структуры с образованием пятиугольной грани. Воз-
можность раскрытия карборанового ядра с образованием шестиуголь-
ной грани иллюстрируется схемой на рис. 43 2 0 1. Как и в схеме рис. 42,

(С)В-

V
В(О-

в—

.>

<ав'
(с)в' \{с)

VY
(С) В— бе—В(С)

7 / \ Х

Рис. 43

два из шести атомов — атомы углерода. Следует отметить, что присое-
динение электронов к карборановои молекуле должно затрагивать пре-
жде всего ближайшее окружение атомов углерода — место с наимень-
шей электронной плотностью, а в образовавшихся анионах атомы уг-
лерода должны располагаться в открытой грани — месте с наибольшей
электронной плотностью. В соответствии с этим электрофильные реак-
ции, например протонирование и взаимодействие с солями переходных
металлов (образование металлокарборанов), идут по открытой грани,
содержащей по крайней мере один атом углерода.
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Важную роль в определении места присоединения электронов могут
играть заместители в карборановом ядре. В зависимости от природы
заместителя и его места в многограннике атака электронов может про-
исходить по трехцентровым связям, иным, чем в случае незамещенных
карборанов. Кроме того, поляризация самой трехцентровой связи под
действием заместителя может приводить к раскрытию трехцентровой
связи, а значит, и полиэдрической молекулы в различных направлени-
ях, т. е. к образованию атомной орбитали с парой электронов на раз-
личных атомах многогранника. Все это будет приводить к различным
наборам динамических структур 2<и.

Присоединение электронов должно сопровождаться значительным
увеличением энергии связывающих орбиталей карборанового ядра и
соответственно понижением энергии разрыхляющих орбиталей. Это
должно приводить к облегчению соответствующих перегруппировок
скелета молекулы. Процессы перестройки могут приводить либо к на-
ложению физико-химических характеристик отдельных изомеров, либо,
если они протекают достаточно быстро, к усреднению спектральных фи-
зико-химических параметров дианионов в растворах 201.

Высокая реакционная способность дианионов проявляется также и
в легкости протекания различных химических реакций, таких как дис-
пропорционирование, взаимодействие с различными электрофильными
агентами, с растворителем и др. Так, при присоединении электронов к
2,4-С2В5Н7 с последующей обработкой СоС12 и№С 5 Н 5 идалее окислени-
ем воздухом, образуется смесь соединений, восемь из которых были вы-
делены 83. При обработке дианионов солями переходных металлов об-
разующиеся комплексы могут иметь различную структуру88, что свя-
зано, по-видимому, с различным электронным строением атомов пере-
ходных металлов, например, Со111 и F e m и, вследствие этого, стабили-
зацией разных динамических структур дианионов. При образовании
комплексов с переходными металлами в большей или меньшей степени
происходит фиксация и локализация данной электронной системы диа-
ниона, и удается выделить комплексы, имеющие определенную струк-
туру.

При протонировании дианионов также происходит фиксация их
структуры. Однако она не всегда идентична структуре соответствующих
карборановых лигандов в комплексах с переходными металлами. При
взаимодействии связывающих орбиталей- открытой грани с протоном
происходит локализация электронных пар. Возможны два варианта та-
кой локализации. Первый — в результате протонирования дианиона об-
разуется система из двух двухцентровых орбиталей и трехцентровой
ВНВ-связи. (Образование связи В—Η—С и тем более С—Η—С в ко-
нечной структуре маловероятно из-за избыточного положительного за-
ряда на атомах углерода в сравнении с атомами бора открытой грани).
При этом фиксируется исходная пяти-или шестиугольная грань диани-
она. Второй — система связывающих орбиталей открытой грани нару-
шается за счет локализации электронов на одном из этих атомов с об-
разованием С—Η или В—Η σ-связей. По понятным причинам образо-
вание С—Η σ-связи предпочтительней (локализация пары электронов
на этом атоме). Атом углерода, таким образом, имеет в данном случае
две σ-связи с двумя заместителями. Оставшиеся четыре электрона раз-
мещаются на двух двухцентровых орбиталях. При этом в слу-
чае шестиугольной грани можно ожидать ее сужения, поскольку четы-
ре электрона на двух двухцентровых орбиталях не могут связывать си-
стему из шести атомов (рис. 44). Примером может служить протониро-
вание КаСгВюНю2", приводящее к моноаниону Ι^Ο^Β,, ,Η'Η, ОДИН ИЗ ИЗО-
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мьров которого имеет структуру (см. рис. 39), где один из атомов уг-
лерода связан σ-связями с R и Η и расположен над плоскостью откры-
той пятиугольной грани 1 2 7 · 1 2 в .

Схема (рис. 44, Ια) реализуется при протонировании, например, ди-
карболлид-ионов C 2 B 9 H H 2 - (на рисунке приведены фрагменты возмож-
ных валентных структур). Протонирование дианиона с образованием
аниона со структурой 16 пока не известно. Схема II может описывать
протонирование С2В8Н1 0

2- из 1,2-С2В8Н10 (На) и C2B10Hi2

2- из 1,2-
C2BiOHioR2 (Пб). Фрагмент 116 приведен из работы 127.

^ . / ν . , X Н Лс)

^ ' В ~ \ ^ - — ЩС) (О.В ве- В(С1 "

- в \ ( с ) - " ^ | 1< С ) / _-в Bic^ ^ 1 . (

 вч

\ I ± н /(о \ / х -в Ь с "
— В В(С)— _^Б В--.

(,) \ ' 6 «О \ I ,

Рис. 44

Аналогично образованию дианионов (рис. 42, 43) можно ожидать
присоединение не только двух, но и четырех и более электронов к мо-
лекулам карборанов с соответствующими перестройками структуры.
При этом, если исходить из карборана с η атомами в многограннике, в
в случае тетраанионов должна образовываться молекула, изоэлектрон-
ная арахно-карборанам, со структурой, представляющей фрагмент мно-
гогранника, имеющего на две вершины больше, чем исходный клозо-
карборан, т. е. п+2, а в гексаанионах — на три вершины, т. е. п + 3, и
так далее. Действительно, получены комплексы с СО111, в котором кар-
борановые лиганды можно рассматривать как тетраанионы и гекса-
анионы — С2ВвН8

4~, С2В8Н10

4~, С2В7Н9

в- и др.S 3 · 8 8 · 2 0 2.

2. Окисление карборанов

Молекулы с замкнутой структурой изоэлектронной серии В„НП

2~,
CBn-Jrin-, С2В„_2Н могут не только присоединять, но теоретически и от-
давать два электрона. Действительно, система связывающих орбиталей
каркаса этих молекул включает три двухценгровые и η—2 трехцентро-
вые связи, что следует из решения системы уравнений *.

2х -\- 2у = 2/1 + 2 (баланс электронов),
3/1 = 2х -\- Ъу (баланс орбиталей),

где η — число атомов в многограннике, χ — число двухцентровых орби-
талей, у — число трехцентровых. Три двухцентровые при удалении двух
электронов могут перестроиться в две трехцентровые с сохранением в
целом структуры или, если возможно, с увеличением симметрии моле-
кулы. Таким образом, в принципе оказывается возможным получение,
например, соединения C 2 B n H z +

n + 2 или соответствующих производных
С2В„Н+

п + 1 и С2ВПН°П — продуктов депротонирования. Изоэлектронные

* Эта система — частный вид системы уравнений Липскомба, предложенной для
описания гидридов бора и других соединений в терминах топологической теории4.
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аналоги таких систем известны в ряду гидридов бора, например В4С14

(тетраэдр) 203-205, В8С18 (додекаэдр) 2 0 6-2 0 9 и В9С18Н
 210. Два последних

соединения изоэлектронны С2В6Н8

2+ и С2В7Нв

2 + соответственно.
Окисление дианионов до нейтральных клозо-карборанов формально

можно рассматривать как процесс, обратный присоединению электро-
нов (см. рис. 42, 43) и приводящий к замыканию открытой структуры
дианиона. Окислитель взаимодействует со связывающей двухэлектрон-
ной пяти- или шестицентровой орбиталью, но в отличие от обычных
электрофильных агентов не фиксирует возможные структуры дианиона,
образуя связь с карборановым лигандом, а замыкает «шЗо-структуру в
клозо- в результате переноса электронов с дианиона 2 И . Образование
тех или иных изомеров /слозо-карборанов может определяться как су-
ществованием динамических структур, так, и, главным образом, напра-
влением закрытия пяти- и шестиугольной грани дианионов, т. е. энер-
гией переходного состояния, структура которого, по-видимому, близка
к структуре переходного комплекса дианиона с окислителем.

3. Реакции карборанов с нуклеофильными агентами

Механизм взаимодействия карборанов с молекулой нуклеофильного
агента на первой стадии напоминает взаимодействие с парой электро-
нов. При этом нуклеофильный. агент взаимодействует с трехцентровой
орбиталью и образуется двухцентровая орбиталь и σ-связь бор — нук-
леофильный агент (рис. 45). В результате по месту атаки нуклеофиль-

Рис. 45

ным агентом, как и в случае присоединения электронов, происходит
раскрытие клозо-структуры и образование открытой грани. В зависи-
мости от природы карборана и атакующей нуклеофильнои частицы мо-
жет сохраняться связь В с оставшейся частью карборановой мо-

лекулы, либо происходить элиминирование этого атома бора при при-
соединении второй молекулы нуклеофильного агента. Например, реак-
ция 1,6-С2В4Н6 с Me3N приводит к раскрытию клозо-карборановой мо-
лекулы". Последовательность электронных и структурных перестроек
молекулы в этой реакции может быть представлена схемой, изображен-
ной на рис. 46. Пара электронов азота взаимодействует с трехцентровой
орбиталью С(1)—В (2)—В(3) с образованием σ-связи Me3N—В (2). Да-
лее орбитали связей В (2)— Н, В (2)—В (5) и В (4)— В (5)— В (6) пере-
страиваются таким образом, что молекула еще больше раскрывается и
образуется пентагональная пирамида, при этом атом водорода, соеди-
ненный σ-связью с атомом В (2), переходит в мостиковое положение.

Другим примером может служить реакция С 2В вНи с основаниями
Льюиса. Нуклеофильный агент L взаимодействует с трехцентровой ор-
биталью, например, между атомами В(1)С(3)В(6), в результате чего
происходит образование σ-связи В (6)—L и раскрытие структуры. Атом
водорода, связанный с В (6) в исходном карборане, переходит в мости-
ковое положение в продукте (рис. 47). Согласно этой схеме, возмож-

5 Уопехн хинни, № 8
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Рис. 46

β 3

Рис. 47

<=>

+BHU

Рис. 48

ность образования 3-изомера для некоторых L в результате раскрытия
С2В9НИ в сторону атакующей частицы L " в представляется маловероят-
ной. По-видимому, вначале образуется изомер 10-ί-7,9·-Ο2Βι,Ηιι, и в ре-
зультате миграции атома В (8) образуется изомер 3-Ь-7,9-С2В9Ни.

Реакция щелочного расщепления 1,2-(1,7)-С2В10Н12 "
9 иллюстриру-

ется схемой, изображенной на рис. 48. Аналогичен механизм расщеп-
ления R2C2BloHio и другими нуклеофилами, такими, как BuLi, RMgX,
пиперидин и др. г 1 2-2 1 4. Промежуточно образующийся C2B,0Hi2R~ явля-
ется изоэлектронным аналогом дикарбадодекаборат-моноаниона
С2В10Н13~, образующегося при протонировании дианиона С2ВюН12

2-. По-
добной схемой может быть изображен механизм образования С2В7Н,5

при щелочном расщеплении l,6-C2BgHioi00. В данном случае помимо
присоединения ОН и элиминирования атома бора имеется стадия вос-
становления, т. е. перенос двух электронов на молекулу с образованием
ара хно-карборана.

Общие закономерности взаимодействия нуклеофилов с трехцентро-
вой связью, по-видимому, проявляются не только для клозо-карборанов,
но и для «ыдо-карборанов, имеющих открытую трехцентровую связь
В—Η—В. Естественно, возможно протекание реакции и по замкнутым
В—В—В-связям ядра. Реакции по В—Η—В-связям, как и в случае ре-
акции по трехцентровой ВВВ-связи, должны начинаться с подачи элек-
тронов на энеогетически самую низкую незаполненную орбиталь
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—В В— )• 1.11

-В в ^ | -В В- | — -В" В - (I)

Рис. 49

В—Η—В с дальнейшей перестройкой образующейся системы по схемам
I и II (рис. 49). Подобным образом протекают такие реакции, как при-
соединение электронов к диборану с образованием В2Нв

2~ 215, отщепле-
ние мостикового водорода от нидо-карборанов и гидридов бора под дей-
ствием оснований или щелочных металлов. В карборанах с открытыми
трехцентровыми В—С—В-связями (например, в 1,2-С2В4Нв

 50) реакции
могут быть описаны подобными схемами. В этом случае, очевид-
но так же, как и в реакциях по замкнутой трехцентровой связи, взаи-
модействие с нуклеофильными агентами (или присоединение электро-
нов) должно сопровождаться раскрытием карборановои молекулы, при-
чем лиганд, по-видимому, должен образовывать связь с атомом бора.
Далее при взаимодействии со второй молекулой лиганда может проис-
ходить элиминирование атома бора.

4. Реакции карборанов с электрофильными агентами

При рассмотрении реакций карборанов с электрофильными агента-
ми логично рассматривать их как реакции по двухцентровым связям.
Действительно, в карборанах отсутствуют атомы, имеющие свободные
электроны, т. е. не участвующие в образовании связи, и свободная орби-
таль электрофильного агента Ε (имеющаяся или образующаяся в ходе
реакции) взаимодействует со связывающей двухцентровой орбиталью
(в переходном состоянии, возможно, с разрыхляющей, как это предпо-

лагается, например, в 2 1 6 ) ; при этом образуется трехцентровая орби-
таль. Возможные варианты образующейся трехцентровой связи пред-
ставлены на рис. 50 (I) *.

Характер образующегося промежуточного комплекса карборана с
электрофильным агентом и тип образующейся трехцентровой связи за-
висят от распределения электронной плотности по связям, поляризуе-
мости связей, особенностей Е, т. е. в конечном итоге от энергии орбита-
лей реагентов и переходного состояния. При образовании трехцентро-
вой связи реакция может протекать по нескольким направлениям.

* Используются общепринятые обозначения трехцентровых связей. Для связей
открытого типа, в некоторых случаях такое изображение может не соответствовать
геометрической структуре, т. е. в переходном состоянии связь ВНЕ может оказаться
линейной.
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Рис. 50

1. Уход протона (Н+) и образование продуктов замещения; напри-
мер, рис. 50 (II). Из этой схемы следует возможность образования изо-
мерных продуктов замещения. Действительно, в зависимости от условий
реакции и природы катализатора соотношение изомеров при галогени-
ровании карборана (12) меняется217. В ряде случаев электрофильное
замещение приводит к единственному продукту, например: алкилиро-
вание и галогенирование 4,5-С2В7Н9 дает 6-Е-4,5-С2В7Н9 (Е = Ме, Et,
Вг) 82. В ряду гидридов бора протонирование В10Н10

2~ приводит к обра-
зованию В10Н12, содержащего трехцентровые связи В—Н—В у вершин-
ных атомов бора, по которым в кислой среде протекает изотопный об-
мен атомов водорода на дейтерий38. Для l,2-C2Bi0Hta дейтерообмен в
кислой среде приводит к замещению атомов водорода у всех атомов
бора218.

2. Трехцентровая связь ВНЕ разрывается, возможно, под действием
нуклеофильного агента (см. взаимодействие трехцентровых связей с
нуклеофильными агентами) с образованием связи Ε—Η и сврбодной
орбитали на атоме В, которая быстро взаимодействует с каким-либо
донором электронов (при нуклеофильном содействии одновременно с
образованием связи Ε—Η); например, рис. 50 (III). По подобному ме-
ханизму формально протекает, по-видимому, окислительное гидрокси-
лирование карборанов 1 1 0 · 1 2 1 .

3. Раскрывается трехцентровая связь ВВЕ. Эта стадия может также
инициироЁаться нуклеофильным агентом (рис. 50 (IV)). При этом, есте-
ственно, происходит раскрытие клозо-структуры с образованием свя-
зи В—Ε и В—L. В ряду гидридов бора таким образом протекает реак-
ция раскрытия структуры Βι0Η10

2~ при взаимодействии с EtiS в кислой
среде, и образуется B ) 0Hi 2(SEt 2) 2

2 1 9. Реакция 1,6-С2В8Н10 с соляной
кислотой не останавливается на какой-либо промежуточной стадии, а
раскрытие сопровождается разрушением молекулу; образуется борная
кислота 10°. По-видимому, к данному типу реакции можно отнести раз-
рушение карборанов в кислой среде на палладиевом катализаторе или
реакцию окислительной деструкции карборанов, например: 2,3-СгВ9Нн
до С2В7Н 1 3

а г или 7,8-С2В9Н12- до 5,6-СгВ8Н12

35.
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В заключение надо отметить, что может существовать альтернатива
предложенным механизмам реакции, т. е. в принципе возможно проте-
кание нуклеофильных реакций, в том числе присоединение электронов по
двухцентровым связям, а электрофильных — по трехцентровым, по сле-
дующим механизмам.

1. Взаимодействие с нуклеофилами, как уже отмечалось, начинается
с размещения электронов на ближайшей (энергетически самой низкой
незанятой) орбитали, у трехцентровой связи — это несвязывающая или
слаборазрыхляющая орбиталь, у двухцентровой связи — разрыхляющая
(рис. 51). Нетрудно видеть, что Б общем случае реакция по трехцентро-

В

й В

Рис. 51

вой связи является предпочтительной энергетически (£°АВС<£*АВ)· В ря-
де случаев, однако, двухцентровая связь оказывается слабой, т. е. энер-
гия связывающей орбитали повышена, а разрыхляющей — понижена.
Например, в С-галоген-карборанах(12) присоединение электронов про-
исходит по С—Hal-связи с образованием На1~ и -^С", и после гидроли-
за образуется незамещенный карборан201. В случае В-галогензаме-
щенных карборанов реакция уже протекает как по связи В—Hal, так и
по трехцентровым связям ядра. Первый процесс приводит к незамещен-
ным карборанам, второй — к дианиону галоген-карборана, после окис-
ления которого образуется смесь возможных изомеров галоген-карбора-

на

V
X

-

\/
ρ Ύв

А ,или Λ
1

Λ

Рис. 52

2. Реакции электрофильных агентов по трехцентровым связям в
принципе можно изобразить схемой, представленной на рис. 52 2 2 0 · 2 2 1:
происходит раскрытие карборановой структуры с образованием на од-
ном из атомов свободной орбитали и затем быстрое взаимодействие по-
следнего с нуклеофильным агентом с образованием связи В—Е. Такой
механизм представляется нам маловероятным, хотя им можно было бы
объяснить некоторые реакции, например деструкцию карборанового
ядра.
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Вышеизложенное в сопоставлении с данными из других областей хи-
мии позволяет предположить общий характер взаимодействия электро-
фильных агентов с двухцентровыми и, в частности, σ-связями с образо-
ванием трехцентровой связи. Так, по-видимому, протекают электро-
фильные реакции в случае соединений, содержащих «электронодефи-
цитный» атом (В, Be, ΑΙ, Ga и т.п.), карбенов и других подобных со-
единений или в случае соединений типа ониевых, в том числе и карбо-
ний-ионов. В органической химии, например, Ола и сотр. успешно раз-
вивают представление о промежуточном образовании трехцентровых
связей С—Е—С и С—Ε—Η (где E = R+, NO2+, H + и др.) 222-228.

Представления о промежуточном образовании трехцентровых свя-
зей могут быть с успехом использованы при описании некоторых про-
межуточных стадий реакций электрофильного замещения в ароматиче-
ских соединениях. Подобные связи, несомненно, образуются в процессе
многочисленных перегруппировок с участием карбоний-иона или атома
со свободной атомной орбиталью (секстетные перегруппировки) (рис.
53). Таким образом, трехцентровые связи, столь характерные для сое-

··
C-N:

О
R -I

О = С — N—R

О "
O=C=N—R

Рис. 53

динений с «дефицитом» электронов (элементы III группы), являются
характерными и для соединений элементов IV—VII групп. В первую
очередь это относится к промежуточным продуктам и переходным со-
стояниям таких реакций, когда у элемента возможно образование сво-
бодной орбитали. Отметим, что трехцентровые связи с успехом приме-
няются при описании ряда соединений инертных газов. Например, в ли-
нейной молекуле XeF2 атомы связаны трехцентровой связью открытого
типа: Хе—центральный атом — представляет 5р-орбиталь с парой элек-
тронов и два атома F — по одной 2/?-орбитали с одним электроном. Че-
тыре электрона размещаются на связывающей и несвязывающей орби-
талях. По-видимому, все синхронные реакции с участием трех (и более)
центров протекают также через промежуточное состояние, характеризу-
ющееся образованием трехцентровых (многоцентровых) орбиталей. На-
пример, в реакциях SN2

Ι ·\/ !
γ- + —cx=(Y—с—χ) Ϊ? YC—μχ-

Β переходном состоянии можно ожидать образование трехцентровой

связи Υ—С—X, причем два электрона размещены на связывающей и
/ \

два — на несвязывающей трехцентровой орбитали.
На наш взгляд, рассмотрение реакций карборанов, гидридов бора и

родственных соединений с нуклеофильными и электрофильными аген-
тами в свете представлений о трехцентровых и двухцентровых связей
позволяет предсказывать возможные направления реакций и лучше по-
нять их механизм.
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